• 제목/요약/키워드: Blade Vortex Interaction

검색결과 68건 처리시간 0.032초

Development of a new free wake model using finite vortex element for a horizontal axis wind turbine

  • Shin, Hyungki;Park, Jiwoong;Lee, Soogab
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권1호
    • /
    • pp.17-27
    • /
    • 2017
  • The treatment of rotor wake has been a critical issue in the field of the rotor aerodynamics. This paper presents a new free wake model for the unsteady analysis for a wind turbine. A blade-wake-tower interaction is major source of unsteady aerodynamic loading and noise on the wind turbine. However, this interaction can not be considered in conventional free wake model. Thus, the free wake model named Finite Vortex Element (FVE hereafter) was devised in order to consider the interaction effects. In this new free wake model, the wake-tower interaction was described by dividing one vortex filament into two vortex filaments, when the vortex filament collided with a tower. Each divided vortex filaments were remodeled to make vortex ring and horseshoe vortex to satisfy Kelvin's circulation theorem and Helmholtz's vortex theorem. This model was then used to predict aerodynamic load and wake geometry for the horizontal axis wind turbine. The results of the FVE model were compared with those of the conventional free wake model and the experimental results of SNU wind tunnel test and NREL wind tunnel test under various inflow velocity and yaw condition. The result of the FVE model showed better correlation with experimental data. It was certain that the tower interaction has a strong effect on the unsteady aerodynamic load of blades. Thus, the tower interaction needs to be taken into account for the unsteady load prediction. As a result, this research shows a potential of the FVE for an efficient and versatile numerical tool for unsteady loading analysis of a wind turbine.

프로펠러팬에서의 Tip Vortex 거동 (Behavior of Tip Vortex in a Propeller Fan)

  • 김성협;고천아인;정상아홍
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1377-1382
    • /
    • 2004
  • Flow fields in a half ducted propeller fan have been investigated by three-dimensional Reynolds-averaged Navier-Stokes (RANS) simulations and a vortex core identification technique. The simulation at the design operating condition shows that the tip vortex onset point is located at 30 percent tip chord of the suction surface on the blade tip. There is no interaction between the tip vortex and the adjacent blade, so that the tip vortex smoothly convects to the rotor exit. However, the high vorticity in the tip vortex causes the wake and the tip leakage flow to be twined around the tip vortex and to interact with the pressure surface of the adjacent blade. This flow behavior corresponds well with experimental results by Laser Doppler Velocimetry. On the contrary, the simulation at the low-flowrate operating condition shows that the tip vortex onset point is located at the 60 percent tip chord of the suction surface. In contrast to the design operating condition, the tip vortex grows almost tangential direction, and impinges directly on the pressure surface of the adjacent blade.

  • PDF

포텐셜 패널과 와류 조각 연계방법을 이용한 로터 공력 해석 (Potential Panel and Vortex Particle Coupling Analysis for Rotor Aerodynamics)

  • 장지성;정인재;이덕주
    • 한국군사과학기술학회지
    • /
    • 제16권4호
    • /
    • pp.481-485
    • /
    • 2013
  • Rotor wake causes unsteady aerodynamics of rotor blade. So, accurate prediction of wake is very important and vortex method is good solution for this problem. Aerodynamic force of the rotor blade is calculated by potential panel method and the rotor wake is simulated by vortex particle method. The vortex particle method is easier to treat wake-body interaction and has better performance to expect the effect of ground and fuselage interaction. Rotor in hovering and forward flight condition is simulated through these methods. Thrust and surface pressure of rotor are compared with experiment data.

전향 축류형 홴에서의 익단 누설 유동 구조 (Structure of Tip Leakage Flow in a Forward-Swept Axial-Flow Fan)

  • 이공희;명환주;백제현
    • 대한기계학회논문집B
    • /
    • 제27권7호
    • /
    • pp.883-892
    • /
    • 2003
  • The experiment using three-dimensional laser Dopperr velocimetery (LDV) measurements and the computation using the Reynolds stress model of the commercial code, FLUENT, were conducted to give a clear understanding on the structure of tip leakage flow in a forward-swept axial-flow fan operating at the maximum efficiency condition. The tip leakage vortex was generated near the position of the minimum wall static pressure, which was located at approximately 12% chord downstream from the leading edge of blade suction side, and developed along the centerline of the pressure trough within the blade passages. A reverse flow between the blade tip region and the casing, induced by tip leakage vortex, acted as a blockage on the through-flow. As a result, high momentum flux was observed below the tip leakage vortex. As the tip leakage vortex proceeded to the aft part of the blade passage, the strength of tip leakage vortex decreased due to the strong interaction with the through-flow and casing boundary layer, and the diffusion of tip leakage vortex caused by high turbulence. In comparison with LDV measurement data, the computed results predicted the complex viscous flow patterns inside the tip region, including the locus of tip leakage vortex center, in a reliable level.

로터 블레이드와 전방와류의 상호작용에 의한 진동특성 측정에 관한 연구 (A Study on The Measurement of Vibration Characteristics by Iteration of The Rotor Blade and The Front Vortex)

  • 이명옥;최종수;이욱
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.170-175
    • /
    • 2005
  • The focus of this paper is to observe the aerodynamic and vibration characteristics of the NACA0012 blade(AR=16.6) fixed on the lower surface of the wind tunnel, by changing air speed and the blade's angle of attack. After fixing a slit-typed vortex generator on the front of the blade, it could be observed that the vibrational characteristics caused by interactions between vortex and blade through the 5-hole pilot tubes. And, also, two different blades in stiffness had been prepared for observing those characteristics above in this experiment. The results were compared with the given stiffness of blade, as well. According to the results, it is clear to recognize that the vibration spectrum increases while air speed and angle of attack increase, and, also, less stiffness means bigger vibration spectrum.

  • PDF

Main Rotor Blade Tip 형상 변화에 따른 유동분석 (A study of Main Rotor Blade Tip shape and analysis of flow around Main Rotor Blade Tip)

  • 김세일
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제2회(2013년)
    • /
    • pp.382-386
    • /
    • 2013
  • 본 연구에서는 Main Rotor Blade Tip 형상 변화에 따른 후류해석을 통해 와류 생성 및 주변 유동을 분석하여 블레이드 팁 형상의 변화가 와류 간섭을 감소시키는지의 여부를 확인하였다. EDISON CFD를 이용하여 블레이드 Blade Tip 형상에 따라 유동이 어떻게 나타나며, Blade 후류의 압력과 점성의 변화를 분석하여 와류의 양상을 해석하였다. 비교 Blade 형상은 2세대 긴 직사각형 모형, KUH 수리온의 Blade, 유로콥터사의 'Blue Edge'로 비교적 최근에 개발된 대표적인 Blade Tip 형상 3개로 정하였다. 결과를 토대로 블레이드 뒷전의 와류흐름 양상을 확인하여 블레이드 와류 간섭현상의 감소를 확인하였다.

  • PDF

2개의 블레이드로 구성된 회전익 끝와류들의 간섭 특성 (Experimental Study on the Evolution of Tip Vortex Structures Generated by a Two-Bladed Rotor)

  • 손용준;박병호;한용운
    • 대한기계학회논문집B
    • /
    • 제35권7호
    • /
    • pp.709-715
    • /
    • 2011
  • 대칭익형 단면에 미세한 피치각의 차이를 가지는 두 개의 로터 블레이드의 끝에서 발생하는 와류들의 상호 간섭을 관측하기 위하여 2차원 LDV를 활용하여 끝와류의 회전속도 성분과 축방향속도 성분들을 후류시기에 따라서 측정하였다. 선행 블레이드는 끝와류 축방향 성분이 정규분포를 나타내는 상사성을 위배한 반면, 후행 블레이드는 회전속도 성분이 복합와류를 나타내는 Vatistas' n=2 모형의 상사성을 위배하는 것으로 관찰되었다. 또한, 후류시기 200~240도 근방에서 두 끝와류의 궤적이 근접되어 상호 간섭을 나타내는 것으로 밝혀졌으며 이 시기 동안 후행블레이드의 와류이완 현상이 발생하는 것으로 확인이 되었다. 이러한 후류 간섭은 관절형 허브를 가지는 로터에서도 발생될 것으로 예측된다.

풍력블레이드 비정상 공력하중 해석을 위한 자유후류기법 개발 및 실험적 연구 (New Free Wake Method Development for Unsteady Aerodynamic Load on HAWT Blade and Experimental Analysis)

  • 신형기;박지웅;김호건;이수갑
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.33-36
    • /
    • 2005
  • A critical issue in the field of the rotor aerodynamics is the treatment of the wake. The wake is of primary importance in determining overall aerodynamic behavior, especially, a wind turbine blade includes the unsteady air loads problem. In this study, the wake generated by blades are depicted by a free wake model to analyse unsteady loading on blade and a new free wake model named Finite Vortex Element(FVE hereafter) is devised in order to include a wake-tower interact ion. In this new free wake model, blade-wake-tower interaction is described by cutting a vortex filament when the filament collides with a tower. This FVE model is compared with a conventional free wake model and verified by a comparison with NREL and SNU wind tunnel model. A comparison with NREL and SNU data shows validity and effectiveness of devised FVE free wake model and an efficient.

  • PDF

A numerical study on the correlation between the evolution of propeller trailing vortex wake and skew of propellers

  • Wang, Lian-Zhou;Guo, Chun-Yu;Su, Yu-Min;Wu, Tie-Cheng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권2호
    • /
    • pp.212-224
    • /
    • 2018
  • The characteristics of the relationship between the evolution of propeller trailing vortex wake and skew angle are numerically examined based on four different five-blade David Taylor Model Basin (DTMB) model propellers with different skew angles. Numerical simulations are based on Reynolds-averaged Naviere-Stokes (RANS) equations combined with SST $k-{\omega}$ turbulence model. Results show that the contraction of propeller trailing vortex wake can be restrained by increasing skew angle and loading conditions, and root vortices fade away when the propeller skew angle increases. With the increase of the propeller's skew angle, the deformation of the hub vortex and destabilization of the tip vortices are weakening gradually because the blade-to-blade interaction becomes weaker. The transition trailing vortex wake from stability to instability is restrained when the skew increases. Furthermore, analyses of tip vortice trajectories show that the increasing skew can reduce the difference in trailing vortex wake contraction under different loading conditions.

Aerodynamic analysis of cambered blade H-Darrieus rotor in low wind velocity using CFD

  • Sengupta, Anal Ranjan;Biswas, Agnimitra;Gupta, Rajat
    • Wind and Structures
    • /
    • 제33권6호
    • /
    • pp.471-480
    • /
    • 2021
  • This present paper leads to investigation of blade-fluid interactions of cambered blade H-Darrieus rotor having EN0005 airfoil blades using comprehensive Computational Fluid Dynamics (CFD) analysis to understand its performance in low wind streams. For several blade azimuthal angle positions, the effects of three different low wind speeds are studied regarding their influence on the blade-fluid interactions of the EN0005 blade rotor. In the prevailing studies by various researchers, such CFD analysis of H-Darrieus rotors are very less, hence it is needed to improve their steady-state performance in low wind velocities. Such a study is also important to obtain important performance insights of such thin cambered blade rotor in its complete rotational cycle. It has been seen that the vortex generated at the suction side of the EN0005 blade rolls back to its leading edge due to the camber of the blade and thus a peak velocity occurs near to the nose position of this blade at its leading edge, which leads to peak performance of this rotor. Again, in the returning phase of the blade, a secondary recirculating vortex is generated that acts on the pressure side of EN0005 blade rotor that increases the performance of this cambered EN0005 blade rotor in its downstream position as well. Here, the aerodynamic performances have been compared considering Standard k-ε and SST k-ω models to check the better suited turbulence model for the cambered EN0005 blade H-Darrieus rotor in low tip speed ratios.