• Title/Summary/Keyword: Blade Shape

Search Result 478, Processing Time 0.026 seconds

Dynamic Modeling and Stabilization of a Tri-Ducted Fan Unmanned Aerial Vehicles using Lyapunov Control (삼중 덕티드 팬 비행체 운동모델링 및 리아푸노프 제어를 이용한 안정화)

  • Na, Kyung-Seok;Won, Dae-Hee;Yoon, Seok-Hwan;Sung, Sang-Kyung;Ryu, Min-Hyoung;Cho, Jin-Soo;Lee, Young-Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.7
    • /
    • pp.574-581
    • /
    • 2012
  • Because of the exposed blade, the UAV using the rotors entail the risks during operation. While a wrapped duct around the fan blades reduces risks, it is a higher thrust performance than the same power load rotor. In this paper, for applying advantages of a ducted fan, the tri-ducted fan air vehicle configuration is proposed. The vehicle has three ducted fans. Two of them are the same shape and size and the third one is the smaller. It is possible to control a rapid attitude stability using thrust vector control. The equations of motion of the tri-ducted fan were derived. Lyapunov control input was applied to the system and stable inputs were derived. A nonlinear simulation was fulfilled by using parameters of a prototype vehicle. It verified a stable attitude and analyzed results.

Development of a Real-Time Measurement System for Horizontal Soil Strength

  • Cho, Yongjin;Lee, Dong Hoon;Park, Wonyeop;Lee, Kyou Seung
    • Journal of Biosystems Engineering
    • /
    • v.40 no.3
    • /
    • pp.165-177
    • /
    • 2015
  • Purpose: Accurate monitoring of soil strength is a key technology applicable to various precision agricultural practices. Soil strength has been traditionally measured using a cone penetrometer, which is time-consuming and expensive, making it difficult to obtain the spatial data required for precision agriculture. To improve the current, inefficient method of measuring soil strength, our objective was to develop and evaluate an in-situ system that could measure horizontal soil strength in real-time, while moving across a soil bin. Methods: Multiple cone-shape penetrometers were horizontally assembled at the front of a vertical plow blade at intervals of 5 cm. Each penetrometer was directly connected to a load cell, which measured loads of 0-2.54 kN. In order to process the digital signals from every individual transducer concurrently, a microcontroller was embedded into the measurement system. Wireless data communication was used between a data storage device and this real-time horizontal soil strength (RHSS) measurement system travelling at 0.5 m/s through an indoor experimental soil bin. The horizontal soil strength index (HSSI) measured by the developed system was compared with the cone index (CI) measured by a traditional cone penetrometer. Results: The coefficient of determination between the CI and the HSSI at depths of 5 cm and 10 cm ($r^2=0.67$ and 0.88, respectively) were relatively less than those measured below 20 cm ($r^2{\geq}0.93$). Additionally, the measured HSSIs were typically greater than the CIs for a given numbers of compactor operations. For an all-depth regression, the coefficient of determination was 0.94, with a RMSE of 0.23. Conclusions: A HSSI measurement system was evaluated in comparison with the conventional soil strength measurement system, CI. Further study is needed, in the form of field tests, on this real-time measurement and control system, which would be applied to precision agriculture.

Somatic Hybrids by Electro-Protoplast Fusion between N. tabacum and N. glutinosa (담배(N. tabacum)와 N. glutinosa 종간 원형질체 융합식물의 생성)

  • 김준철;최성진
    • KSBB Journal
    • /
    • v.5 no.2
    • /
    • pp.175-182
    • /
    • 1990
  • Protoplasts, isolated from leaf of N. tabacum NR-/SR+ and N. glottnosa were electrofused and divided with a plating efficiency of 30∼35% in AAPI 9M medium. Green callus lines were selected in protoplast-derived colonies on MSNO3 selection medium with 1.2mg/ml streptomycin sulfate on the basis of nitrate reductase proficiency and streptomycin resistance. Four putative hybrid plant lines regenerated from the green callus lines had intermediate morphology between that of parents with respect to floral shape, corolla length and ovate leaf blade. Zymograms of leaf peroxidase and esterase from these putative hybrid plant lines showed isozyme profiles derived from both parents and also, they exhibited additional and lost bands. Cytological analysis of two putative hybrid plant lines gave chromosome counts of 2n=66 in L22 and 2n=54 in L44 which were less than the expected number of N. tabacum(2n=48) and N. glutinosa(2n=24).

  • PDF

Analysis of mechanical properties of agricultural products for development of a multipurpose vegetable cutting machine

  • Park, Jeong Gil;Jung, Hyun Mo;Kang, Bum Seok;Mun, Seong Kyu;Lee, Seung Hun;Lee, Seung Hyun
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.3
    • /
    • pp.432-440
    • /
    • 2016
  • The consumption of pre-treated vegetables (including fresh-cut vegetables) that are washed, peeled, and trimmed has been significantly increased because of their easy use for cooking. Vegetable cutting machines have been widely utilized for producing fresh-cut vegetables or agricultural products of different sizes; however, the design standard is not established for specific types of agricultural products. Therefore, this study was conducted to determine mechanical properties (compressive and shear forces) of targeted agricultural products (radish, carrot, squash, cucumber, shiitake mushroom, and sweet potato) for developing a multipurpose vegetable cutting machine. According to ASAE standard (s368.3), compressive and shear forces of targeted agricultural products were measured by using a custom built UTM (universal testing machine). Shape type of samples and speed ranges (5 - 15 mm/min) of loading rate on bioyield and shear points varied depending on the targeted agricultural product. The range of averaged bioyield points of targeted agricultural products were between 7.89 and 146.98 N. On the other hand, their averaged shear points ranged from 22.50 to 53.47 N. Results clearly showed that the bioyield and shear points of targeted agricultural products were thoroughly affected by their components. As measuring compressive and shear forces of a variety of agricultural products, it will be feasible to calculate blade cutting force for designing multipurpose vegetable cutting machine.

The Analysis on the Torso Type Dress Form Developed Through the 3-D Virtual Body Modeling of the Korean Female Fashion Models (국내 여성 패션모델의 3차원 가상인체 모델링을 통한 토르소형 인대 개발과 그 특성 분석)

  • Park, Gin Ah
    • Journal of the Korean Society of Costume
    • /
    • v.65 no.2
    • /
    • pp.157-175
    • /
    • 2015
  • The study was aimed to develop a torso-type dress form representing body features of the female fashion models in Korea. To fulfill this purpose, 5 female fashion models aged between 20 and 26 having the average body measurements of professional fashion models in Korea were selected and their 3-D whole body scanned data were analysed. The 3-D whole body scanning method enabled to generate a virtual female fashion model within the CAD system by measuring the subjects' body shapes and sizes. In addition, the virtual model's body data led the development of a standard female fashion model dress form for the efficient fashion show preparation. In order to manufacture the real dress form for female fashion models, 3-D printing technology was adopted. The consequent results are as follows: (1) the body measurements (unit: cm) of the developed dress form were: biacromion length, 36.0, bust point to bust point, 16.6, front/back interscye lengths, 32.0/33.0, neck point to breast point, 26.0, neck point to breast point to waist line, 41.5, waist front/back lengths, 34.5/38.5, waist to hip length, 24.0, bust circumference, 85.0, underbust circumference, 75.0, waist circumference, 65.0, hip circumference, 92.0. (2) the body measurements differences between the developed and existing dress forms were highlighted with the body measurements of neck point to breast point and waist to hip length. (3) the body shape features of the developed dress form showed that bust, shoulder blade, shoulder slope, abdomen and back waist line to hip line parts were more realistically manufactured.

A Numerical Study on the Effect of Mountainous Terrain and Turbine Arrangement on the Performance of Wind Power Generation (지형에 따른 발전기 배치가 풍력 발전 성능에 미치는 영향에 관한 수치해석 연구)

  • Lee, Myung-Sung;Lee, Seung-Ho;Hur, Nahm-Keon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.10
    • /
    • pp.901-906
    • /
    • 2010
  • A three-dimensional flow simulation was performed to investigate the flow field in a wind farm on a complex terrain. The present study aims to examine the effects of mountainous terrain and turbine arrangement on the performance of wind power generation. A total of 49 wind turbines was modeled in the computational domain; detailed blade shape of the turbines was considered. Frozen rotor method was used to simulate the rotating operation. The torque acting on the turbine blades was calculated to evaluate the performance of the wind turbines. The numerical results showed details of the flow structure in the wind farm including the velocity deficit in the separated flow regions; this velocity deficit was due to the topographical effect. The effect of the wake induced by the upstream turbine on the performance of the downstream wind turbine could also be observed from the results. The methodology of the present study can be used for selecting future wind-farm sites and wind-turbine locations in a selected site to ensure maximum power generation.

A Systematic Study of Elsholtzia Willd. (Lamiaceae) in Korea (한국산 향유속(Elsholtzia Willd., 꿀풀과)의 분류학적 연구)

  • Jeon, Yun-Chang;Hong, Suk-Pyo
    • Korean Journal of Plant Taxonomy
    • /
    • v.36 no.4
    • /
    • pp.309-333
    • /
    • 2006
  • Examined were the vegetative and reproductive characters such as external morphology, anatomy (leaf petiole, blade and stem), pollen and nutlet for the taxonomic revision of Elsholtzia in Korea. The inflorescence of all studied taxa of Elsholtzia in Korea is secund and 0.5-10 cm long. Leaves are ovate or nearly and $0.2-10{\times}0.2-6.0cm$. The shapes of inflorescence and leaves are very useful taxonomic characters. The stomata types are anomocytic and diacytic. The morphology of nutlet is ovoid and pitted in surface pattern of exocarp. All studied taxa are myxocarpy. The pollen grains are of medium size and subprolate in shape, and have typical bi-reticulate exine surface. Four species are recognized for Korean Elsholtzia by the identification key and descriptions in this study.

Characteristics Analysis of a Pseudoelastic SMA Mesh Washer Gear for Jitter Attenuation of Stepper-actuated Gimbal-type Antennas (스텝모터 구동형 짐벌 안테나의 미소진동저감을 위한 초탄성 형상기억합금 메쉬 와셔 기어의 기본특성 분석)

  • Park, Yeon-Hyeok;You, Chang-Mok;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.2
    • /
    • pp.46-58
    • /
    • 2018
  • A two-axis gimbal-type X-band antenna is widely used to transmit bulk image data from high-resolution observation satellites. However, undesirable microvibrations induced by driving the antenna should be attenuated, because they are a main cause of image-quality degradation of the observation satellite. In this study, a pseudoelastic memory alloy (SMA) gear was proposed to attenuate the microvibrations by driving the antenna in an azimuth angle. In addition, the proposed gear can overcome the limitations of the conventional titanium blade gear, which is not still enough and is vulnerable to plastic deformations under excessive torque. To investigate the basic characteristics of the proposed SMA mesh washer gear, a static load test was performed on the thickness of the SMA mesh washer and the rotation of the gear. Moreover, The microvibration measurement test demonstrated that the SMA mesh washer gear proposed in this study is effective for microvibration attenuation.

The Adaptive Maximum Power Point Tracking Control in Wind Turbine System Using Torque Control (토크제어를 이용한 풍력발전시스템의 적응 최대 출력 제어)

  • Hyun, Jong-Ho;Kim, Kyung-Youn
    • Journal of IKEEE
    • /
    • v.19 no.2
    • /
    • pp.225-231
    • /
    • 2015
  • The parameter K which decides how much to convert wind energy to electric energy in MPPT(maximum power point tracking) control of wind turbine system using torque controller is changed because blade shape and air density change. If the parameter K is not optimal value, power lose occur. The changed parameter K is important issue in wind turbine system. In this paper, to solve this problem, considering wind turbine system using back-to-back converter control and torque control, we propose the adaptive MPPT algorithm which performs fast control by using initial K, estimates mechanical power using Kalman filter method, uses the estimated mechanical power as input for MPPT algorithm again, and consequently performs optimal MPPT control.

$TiO_2$ Particle Size Effect on the Performance of Dye-Sensitized Solar Cell ($TiO_2$ 입자 크기에 따른 염료감응태양전지의 성능 변화)

  • Kim, Ba-Wool;Park, Mi-Ju;Lee, Sung-Uk;Choi, Won-Seok;Hong, Byung-You
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.145-146
    • /
    • 2007
  • Dye-Sensitized Solar Cell Solar cells(DSSC) were appeared for overcoming global environmental problems and lack of fossil fuel problems. And it is one of study field that is getting into the spotlight lately because manufacturing method is more simple and inexpensive than existing silicon solar cells. Oxide semiconductor is used for adsorption of dye and electron transfer in DSSC study, and $TiO_2$ is used most usually. Overall light conversion efficiency is changed by several elements such as $TiO_2$ particle size and structure, pore size and shape. In this study, we report the solar cell performance of titania$(TiO_2)$ film electrodes with various particle sizes. $TiO_2$ particle size was 16 nm, 25 nm, and mixture of 16nm and 25 nm, and manufactured using Doctor blade method. When applied each $TiO_2$ film to DSSC, the best efficiency was found at 16nm of $TiO_2$ particle. 16nm of $TiO_2$ particle has the highest efficiency compared to the others, because particles with smaller diameters would adsorb more dye due to larger surface area. And in case of the mixture of 16nm and 25 nm, the surface area was smaller than expected. It is estimated that double layer is adsorbed a large amount of chemisorbed dye and improved light scattering leading due to efficiency concentration light than mono layer.

  • PDF