• Title/Summary/Keyword: Bit error

Search Result 2,257, Processing Time 0.026 seconds

BER for Single-bit Error-correcting Code (Single-bit Error-correcting Code 에 대한 BER)

  • Fuwen Pang;Hwang, Sang-Ku;Hong, Tchang-Hee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.210-216
    • /
    • 2000
  • The features of bit error rate (BER) are discussed, how to analyze statistics of the bit error rate. How many will the BER be improved after correcting one single-error in the block\ulcorner The answer is satisfactory in this paper.

  • PDF

A Study on Probability of Bit Error for Wavelet in 4-ary SWSK System (4-ary SWSK 시스템에서 웨이브릿에 대한 비트 에러 확률에 관한 연구)

  • Jeong, Tae-Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.1
    • /
    • pp.57-62
    • /
    • 2011
  • This paper presents a study on the performance analysis on probability of bit error for wavelet in 4-ary SWSK system. The formula for the bit error probability in 4-ary SWSK system was derived from the conventional method. This paper experimentally implements the probability of bit error for Daubechies, Biorthogonal, Coiflet and Symlet wavelet using the conventional formula of bit error probability. Additionally, the performance of bit error probability is analyzed for the period and the number of wavelet taps. Based on the results, we confirmed that the performance of Coiflet and Symlet wavelet for the probability of bit error is superior to the other wavelet, and their probability of bit error are similar.

Error Correcting Technique with the Use of a Parity Check Bit (패리티 검사비트를 이용한 새로운 오류정정 기술)

  • 현종식;한영열
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 1997.11a
    • /
    • pp.137-146
    • /
    • 1997
  • The simplest bit error detection scheme is to append a parity bit to the end of a bit sequence. In this paper an error correction technique with the use of a parity bit is proposed, and the performance of the proposed system is analyzed. The error probability of the proposed system is compared with the output of computer simulation of the proposed system. It is also compared with the error probability of error at BPSK system, and the signal-to-noise ratio gain is showed.

  • PDF

An Efficient Error Detection Technique for 3D Bit-Partitioned SRAM Devices

  • Yoon, Heung Sun;Park, Jong Kang;Kim, Jong Tae
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.5
    • /
    • pp.445-454
    • /
    • 2015
  • As the feature sizes and the operating charges continue to be scaled down, multi-bit soft errors are becoming more critical in SRAM designs of a few nanometers. In this paper, we propose an efficient error detection technique to reduce the size of parity bits by applying a 2D bit-interleaving technique to 3D bit-partitioned SRAM devices. Our proposed bit-interleaving technique uses only 1/K (where K is the number of dies) parity bits, compared with conventional bit-interleaving structures. Our simulation results show that 1/K parity bits are needed with only a 0.024-0.036% detection error increased over that of the existing bit-interleaving method. It is also possible for our technique to improve the burst error coverage, by adding more parity bits.

The Mutual Information for Bit-Linear Linear-Dispersion Codes (BLLD 부호의 Mutual Information)

  • Jin, Xiang-Lan;Yang, Jae-Dong;Song, Kyoung-Young;No, Jong-Seon;Shin, Dong-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10A
    • /
    • pp.958-964
    • /
    • 2007
  • In this paper, we derive the relationship between the bit error probability (BEP) of maximum a posteriori (MAP) bit detection and the bit minimum mean square error (MMSE), that is, the BEP is greater than a quarter of the bit USE and less than a half of the bit MMSE. By using this result, the lower and upper bounds of the derivative of the mutual information are derived from the BEP and the lower and upper bounds are easily obtained in the multiple-input multiple-output (MIMO) communication systems with the bit-linear linear-dispersion (BLLD) codes in the Gaussian channel.

Efficient Implementation of Single Error Correction and Double Error Detection Code with Check Bit Pre-computation for Memories

  • Cha, Sanguhn;Yoon, Hongil
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.4
    • /
    • pp.418-425
    • /
    • 2012
  • In this paper, efficient implementation of error correction code (ECC) processing circuits based on single error correction and double error detection (SEC-DED) code with check bit pre-computation is proposed for memories. During the write operation of memory, check bit pre-computation eliminates the overall bits computation required to detect a double error, thereby reducing the complexity of the ECC processing circuits. In order to implement the ECC processing circuits using the check bit pre-computation more efficiently, the proper SEC-DED codes are proposed. The H-matrix of the proposed SEC-DED code is the same as that of the odd-weight-column code during the write operation and is designed by replacing 0's with 1's at the last row of the H-matrix of the odd-weight-column code during the read operation. When compared with a conventional implementation utilizing the odd-weight- column code, the implementation based on the proposed SEC-DED code with check bit pre-computation achieves reductions in the number of gates, latency, and power consumption of the ECC processing circuits by up to 9.3%, 18.4%, and 14.1% for 64 data bits in a word.

Study of the Switching Errors in an RSFQ Switch by Using a Computerized Test Setup (자동측정장치를 사용한 RSFQ switch의 Switching error에 관한 연구)

  • Kim, Se-Hoon;Baek, Seung-Hun;Yang, Jung-Kuk;Kim, Jun-Ho;Kang, Joon-Hee
    • Progress in Superconductivity
    • /
    • v.7 no.1
    • /
    • pp.36-40
    • /
    • 2005
  • The problem of fluctuation-induced digital errors in a rapid single flux quantum (RSFQ) circuit has been a very important issue. In this work, we calculated the bit error rate of an RSFQ switch used in superconductive arithmetic logic unit (ALU). RSFQ switch should have a very low error rate in the optimal bias. Theoretical estimates of the RSFQ error rate are on the order of $10^{-50}$ per bit operation. In this experiment, we prepared two identical circuits placed in parallel. Each circuit was composed of 10 Josephson transmission lines (JTLs) connected in series with an RSFQ switch placed in the middle of the 10 JTLs. We used a splitter to feed the same input signal to both circuits. The outputs of the two circuits were compared with an RSFQ exclusive OR (XOR) to measure the bit error rate of the RSFQ switch. By using a computerized bit-error-rate test setup, we measured the bit error rate of $2.18{\times}10^{-12}$ when the bias to the RSFQ switch was 0.398 mA that was quite off from the optimum bias of 0.6 mA.

  • PDF

Fault Tolerant Cryptography Circuit for Data Transmission Errors (데이터 전송 오류에 대한 고장 극복 암호회로)

  • You, Young-Gap;Park, Rae-Hyeon;Ahn, Young-Il;Kim, Han-Byeo-Ri
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.10
    • /
    • pp.37-44
    • /
    • 2008
  • This paper presented a solution to encryption and decryption problem suffering data transmission error for encrypted message transmission. Block cypher algorithms experience avalanche effect that a single bit error in an encrypted message brings substantial error bits after decryption. The proposed fault tolerant scheme addresses this error avalanche effect exploiting a multi-dimensional data array shuffling process and an error correction code. The shuffling process is to simplify the error correction. The shuffling disperses error bits to many data arrays so that each n-bit data block may comprises only one error bit. Thereby, the error correction scheme can easily restore the one bit error in an n-bit data block. This scheme can be extended on larger data blocks.

Error Correction Coding on the Transform Coded Image Transmission over Noisy Channel (잡음 채널에서 변환 부호화 영상 전송에 대한 에러 정정 부호)

  • 채종길;주언경
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.4
    • /
    • pp.97-105
    • /
    • 1994
  • Transform image coding using DCT is proved to be efficient in the absence of channel error but its performance degrades rapidly over noisy channel. In this paper, in the case of appling bit selcetive error correction coding that protects some significant bits in a codeword, an efficient allocation method of imformation bits and additive redundancy bits used for quantization and error correction coding respectively under constant transmission bit rate is proposed, and its performance is analyzed. As a result, without increasing trasmission bit rate, PSNR can be improved up to 7~8 [dB] below bit error rate $10^2$ and the image without blocking effect caused by bit error resulted from channel noise can be recostructed.

  • PDF

An Analysis of Bit Error Probability of Reed-Solomon/Convolutional Concatenated Codes (Reed-Solomon/길쌈 연쇄부호의 비트오율해석)

  • 이상곤;문상재
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.8
    • /
    • pp.19-26
    • /
    • 1993
  • The bit error probability of Reed-Solomon/convolutional concatenated codes can be more exactly calculated by using a more approximate bound of the symbol error probability of the convolutional codes. This paper obtains the unequal symbol error bound of the convolutional codes, and applies to the calculation of the bit error probability of the concatenated codes. Our results are tighter than the earlier studied other bounds.

  • PDF