• 제목/요약/키워드: Bismuth(Bi)

검색결과 304건 처리시간 0.03초

반자성 물질을 이용한 자기공명영상검사에서의 인공물 감소 (Reduction of Artifacts in Magnetic Resonance Imaging with Diamagnetic Substance)

  • 최우전;김동현
    • 한국방사선학회논문지
    • /
    • 제13권4호
    • /
    • pp.581-588
    • /
    • 2019
  • 자기공명영상검사는 조직의 대조도 와 해상력이 우수하지만, 인공물이 발생 될 경우 진단에 영향을 주어 판독이 불가능한 영상을 생성하기도 한다. 치아에 삽입된 금속은 강자성체 또는 상자성체로 되어있는 경우가 대부분이며 자화율 차이로 인하여 기하학적 왜곡을 유발하여 영상진단에 저해되는 경우가 많으며 이를 저감시킬 필요가 있다. 이에 본 연구는 반자성 물질을 사용에 따른 금속 인공물 분석을 실시하고자 한다. 자성 물질로는 치아교정용 와이어와 브라켓인 스테인리스 스틸이 사용되었고 반자성 물질은 구리, 아연, 비스무트를 사용하였다. 검사장비는 1.5T, 3T가 사용되었으며 사용된 시퀀스는 SE, TSE, GE, EPI을 사용하여 측정하였다. 자체 제작된 팬텀을 물질은 균등한 신호를 위하여 아가로스 겔(10%)을 사용하였으며 인공물 유발 물질은 스테인리스 스틸은 팬텀의 정중앙에 위치시켜 검사하고 각 길이 10mm의 정 육면체 반자성 물질의 씌워 검사하였다. 인공물 측정은 Image J를 사용하여 순수한 팬텀 영상에서 자성물질을 포함한 영상을 감산하여 얻은 영상에서 Low Threshold 값을 10으로 설정 한 후 Wand tool을 사용하여 인공물 영역설정 후 면적을 구하였다. 스테인리스 스틸에서 발생한 금속 인공물은 반자성 물질 중 비스무트를 사용한 영상에서 금속 인공물이 가장 많이 감소하였으며 구리와 아연은 약간은 감소하지만, 그 정도의 차이는 크지 않다고 하겠다. 이러한 이유는 비스무트의 반자성 자화율이 가장 작아서 강자성체에서의 자화율을 가장 많이 상쇄하였기 때문이라고 생각된다. 1.5T 와 3T 모두에서 비스무트를 사용한 영상의 인공물이 가장 적게 나왔다. 시퀀스별 인공물 감소는 1.5T에서는 TSE에서 가장 많이 인공물이 감소하였으며 3T에서는 SE에서 가장 많은 인공물이 감소하였다. 따라서 반자성물질의 따른 인공물 변화의 결과는 자화율(${\chi}$)이 가장 낮은 비스무트를 사용한 영상에서 금속인공물이 기준인 Implant 인공물 보다 줄어든 양상을 보여 자화율이 낮은 물질일수록 금속 인공물이 줄어든다는 것을 알 수 있었으며, 기존 금속 인공물의 해결 방법의 단점으로 지적되어온 스캔 시간의 증가 등이 나타나지 않으면서도 인공물을 줄일 수 있는 방법으로 향후 치아 교정 물질뿐만 아니라 치아 보철물 전체에 대한 금속 인공물 저감에 관한 연구의 기초 자료로 사용될 것으로 사료된다.

피폭선량저감 섬유의 개발과 CT 검사시 산란선 차폐 효과 (Development and Radiation Shield effects of Dose Reduction Fiber for Scatter ray in CT Exams)

  • 김성환;김용진;곽종석
    • 한국산학기술학회논문지
    • /
    • 제14권4호
    • /
    • pp.1871-1876
    • /
    • 2013
  • 본 연구에서는 평균 입자의 크기가 $1{\sim}500{\mu}m$인 산화비스무스($Bi_2O_3$)와 평균 입자의 크기가 5 ~ 50 nm인 나노 황산바륨($BaSO_4$)을 사용하여 선량저감섬유(DRF; dose reduction fiber, (주)버팔로)를 개발하였다. 개발된 섬유를 시트 형태로 제작한 후 CT 검사시 발생한 산란선에 대한 차폐 특성을 조사하였다. 특성평가는 전리조와 인체 펜텀을 이용한 팬텀실험과 유리선량계를 이용한 임상실험을 병행하여 진행하였다. 임상실험에서는 3개 종합병원 60명의 환자에 대한 흉부 및 두부 CT 검사시 선량저감섬유를 사용하였을 때와 사용하지 않았을 때 안구, 흉부, 복부 및 생식선의 피부 및 심부 선량을 비교하여 차폐효과를 평가하였다. 본 연구를 통하여 개발된 선량저감섬유는 산란선에 의한 두부 및 흉부에 불필요한 피폭선량을 20~50% 정도 저감할 수 있는 것으로 확인되었으며, CT 검사시 본 섬유를 활용한다면 환자 피폭선량을 포함한 국민 총피폭선량 경감에 기여할 수 있을 것이다.

Enhanced Piezoelectric Properties of Lead-Free La and Nb Co-Modified Bi0.5(Na0.84K0.16)0.5TiO3-SrTiO3 Ceramics

  • Malik, Rizwan Ahmed;Hussain, Ali;Maqbool, Adnan;Zaman, Arif;Song, Tae Kwon;Kim, Won Jeong;Kim, Myong Ho
    • 한국재료학회지
    • /
    • 제25권6호
    • /
    • pp.288-292
    • /
    • 2015
  • New lead-free piezoelectric ceramics $0.96[\{Bi_{0.5}(Na_{0.84}K_{0.16})_{0.5}\}_{1-x}La_x(Ti_{1-y}Nb_y)O_3]-0.04SrTiO_3$ (BNKT-ST-LN, where $x=y=0.00{\leq}(x=y){\leq}0.015)$ were synthesized using the conventional solid-state reaction method. Their crystal structure, microstructure, and electrical properties were investigated as a function of the La and Nb (LN) content. The X-ray diffraction patterns revealed the formation of a single-phase perovskite structure for all the LN-modified BNKT-ST ceramics in this study. The temperature dependence of the dielectric curves showed that the maximum dielectric constant temperature ($T_m$) shifted towards lower temperatures and the curves became more diffuse with an increasing LN content. At the optimum composition (LN 0.005), a maximum value of remnant polarization ($33C/cm^2$) with a relatively low coercive field (22 kV/cm) and high piezoelectric constant (215 pC/N) was observed. These results indicate that the LN co-modified BNKT-ST ceramic system is a promising candidate for lead-free piezoelectric materials.

Enhanced Piezoelectric Properties of (1-x)[0.675BiFeO3-0.325BaTiO3]-xLiTaO3 Ternary System by Air-Quenching

  • Akram, Fazli;Malik, Rizwan Ahmed;Lee, Soonil;Pasha, Riffat Asim;Kim, Myong Ho
    • 한국재료학회지
    • /
    • 제28권9호
    • /
    • pp.489-494
    • /
    • 2018
  • Lead free $(1-x)(0.675BiFeO_3-0.325BaTiO_3)-xLiTaO_3$ (BFBTLT, x = 0, 0.01, 0.02, and 0.03, with 0.6 mol% $MnO_2$ and 0.4 mol% CuO) were prepared by a solid state reaction method, followed by air quenching and their crystalline phase, morphology, dielectric, ferroelectric and piezoelectric properties were explored. An X-ray diffraction study indicates that lithium (Li) and tantalum (Ta) were fully incorporated in the BFBT materials with the absence of any secondary phases. Dense ceramic samples (> 92 %) with a wide range of grain sizes from $3.70{\mu}m$ to $1.82{\mu}m$ were obtained in the selected compositions ($0{\leq}x{\leq}0.03$) of BFBTLT system. The maximum temperatures ($T_{max}$) were mostly higher than $420^{\circ}C$ in the studied composition range. The maximum values of maximum polarization ($P_{max}{\approx}31.01{\mu}C/cm^2$), remnant polarization ($P_{rem}{\approx}22.82{\mu}C/cm^2$) and static piezoelectric constant ($d_{33}{\approx}145pC/N$) were obtained at BFBT-0.01LT composition with 0.6 mol% $MnO_2$ and 0.4 mol% CuO. This study demonstrates that the high $T_{max}$ and $d_{33}$ for BFBTLT ceramics are favorable for industrial applications.

Processing, structure, and properties of lead-free piezoelectric NBT-BT

  • Mhin, Sungwook;Lee, Jung-Il;Ryu, Jeong Ho
    • 한국결정성장학회지
    • /
    • 제25권4호
    • /
    • pp.160-165
    • /
    • 2015
  • Lead-free piezoelectric materials have been actively studied to substitute for conventional PZT based solid solution, $Pb(Zr_xTi_{1-x}O_3)$, which occurs unavoidable PbO during the sintering process. Among them, Bismuth Sodium Titanate, $Na_{0.5}Bi_{0.5}TiO_3$ (abbreviated as NBT) based solid solution is attracted for the one of excellent candidates which shows the strong ferroelectricity, Curie temperature (Tc), remnant polarization (Pr) and coercive field (Ec). Especially, the solid solution of rhombohedral phase NBT with tetragonal perovskite phase has a rhombohedral - tetragonal morphotropic phase boundary. Modified NBT with tetragonal perovskite at the region of MPB can be applied for high frequency ultrasonic application because of not only its low permittivity, high electrocoupling factor and high mechanical strength, but also effective piezoelectric activity by poling. In this study, solid state ceramic processing of NBT and modified NBT, $(Na_{0.5}Bi_{0.5})_{0.93}Ba_{0.7}TiO_3$ (abbreviated as NBT-7BT), at the region of MPB using 7 % $BaTiO_3$ as a tetragonal perovskite was introduced and the structure between NBT and NBT-7BT were analyzed using rietveld refinement. Also, the ferroelectric and piezoelectric properties of NBT-7BT such as permittivity, piezoelectric constant, polarization hysteresis and strain hysteresis loop were compared with those of pure NBT.

무연 BNBT 세라믹스의 압전특성에 미치는 La2O3의 영향 (Effects of La2O3 on the Piezoelectric Properties of Lead-Free (Bi0.5Na0.5)0.94Ba0.06TiO3 Piezoelectric Ceramics)

  • 손영진;윤만순;어순철
    • 한국재료학회지
    • /
    • 제15권12호
    • /
    • pp.756-759
    • /
    • 2005
  • A lead free piezoelectric material, bismuth sodium barium titanate $(Bi_{0.5}Na_{0.5})_{0.94}Ba_{0.06}TiO_3$ (BNBT), was considered as an environment-friendly alternatives for the current PZT system. A perovskite BNBT was synthesized by conventional bulk ceramic processing technique. In order to improve piezoelectric properties, $La_2O_3$ as a dopant was incorporated into the BNBT system up to 0.025 moi, ana the effects on subsequent the piezoelectric ana dielectric properties were systematically investigated. With increasing $La_2O_3$ contents, the equilibrium grain shape was remarkably evidenced and sintered density was increased. Piezoelectric and dielectric properties were s]town to have maximum values at the $La_2O_3$ contents of 0.02 mol. $La^{3+}$ ions seemed to act as a softener in the BNBT system and to enhance dielectric and piezoelectric properties in this study.

Enhanced Sintering Behavior and Electrical Properties of Single Phase BiFeO3 Prepared by Attrition Milling and Conventional Sintering

  • Jeon, Nari;Moon, Kyoung-Seok;Rout, Dibyranjan;Kang, Suk-Joong L.
    • 한국세라믹학회지
    • /
    • 제49권6호
    • /
    • pp.485-492
    • /
    • 2012
  • Dense and single phase $BiFeO_3$ (BFO) ceramics were prepared using attrition milled calcined (coarse) powders of an average particle size of ${\approx}3{\mu}m$ by conventional sintering process. A relative density of ${\approx}96%$ with average grain size $7.3{\mu}m$ was obtained when the powder compacts were sintered at $850^{\circ}C$ even for a shorter duration of 10 min. In contrast, densification barely occurred at $800^{\circ}C$ for up to 12 h rather the microstruce showed the growth of abnormal grains. The grain growth behavior at different temperatures is discussed in terms of nonlinear growth rates with respect to the driving force. The sample sintered at $850^{\circ}C$ for 12 h showed enhanced electrical properties with leakage current density of $4{\times}10^{-7}A/cm^2$ at 1 kV/cm, remnant polarization $2P_r$ of $8{\mu}C/cm^2$ at 20 kV/cm, and minimal dissipation factor (tan ${\delta}$) of ~0.025 at $10^6$ Hz. These values are comparable to the previously reported values obtained using unconventional sintering techniques such as spark plasma sintering and rapid liquid phase sintering.

미임계로 표적빔창의 열수력 해석 (Thermal Hydraulic Power Analysis of the HYPER Target Beam Window)

  • 송민근;주은선;최진호;송태영;탁남일;박원석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.39-42
    • /
    • 2002
  • The nuclear transmutation technology to Incinerate the long lived radioactive nuclides and produce energy during the incineration process is believed to be one or the best solutions. HYPER(${\underline{HY}}brid {\underline{P}}ower {\underline{E}}xtraction {\underline{R}}$eactor)is the accelerator driven transmutation system which is being developed by KAERI(Korea Atomic Energy Research Institute). Lead-bismuth(Pb-Bi) is adopted as a coolant and spallation target material. In this paper, we performed the thermal-hydraulic analysis of HYPER target using the commercial code FLUENT, and also calculated thermal and mechanical stress of the beam window using the commercial code ANSYS. It is found that there is an optimum value for the window diameter and the maximum allowable beam current can be increased to 17.3 mA for the inner diameter of windows, 40 cm. Finally, the other shapes such as uniform or scanned beam were considered. The results of FLUENT calculations show that the uniform type is preferable to the other shapes of the beam in terms of the window and target cooling and the maximum window temperature is lower than that of the parabolic beam by $58 ^{\circ}C$ for the beam current, 13 mA.

  • PDF

EFFECTS OF MILLING DURATION ON THE THERMOELECTRIC PROPERTIES OF N-TYPE Bi2Te2.7Se0.3

  • MIN-SOO PARK;HYE-YOUNG KOO;YONH-HO PARK;GOOK-HYUN HA
    • Archives of Metallurgy and Materials
    • /
    • 제64권2호
    • /
    • pp.591-595
    • /
    • 2019
  • In this study, an oxide reduction process and a reduction-sintering process were employed to synthesize a thermoelectric alloy from three thermoelectric composite oxide powders, and the thermoelectric properties were investigated as a function of the milling duration. Fine grain sizes were analyzed by via X-ray diffraction and scanning electron microscopy, to investigate the influence of the milling duration on the synthesized samples. It was found that microstructural changes, the Seebeck coefficient, and the electrical resistivity of the compounds were highly dependent on the sample milling duration. Additionally, the carrier concentration considerably increased in the samples milled for 6 h; this was attributed to the formation of antisite defects introduced by the accumulated thermal energy. Moreover, the highest value of ZT (=1.05) was achieved at 373K by the 6-h milled samples. The temperature at which the ZT value maximized varied according to the milling duration, which implies that the milling duration of the three thermoelectric composite oxide powders should be carefully optimized for their effective application.

High quality topological insulator Bi2Se3 grown on h-BN using molecular beam epitaxy

  • Park, Joon Young;Lee, Gil-Ho;Jo, Janghyun;Cheng, Austin K.;Yoon, Hosang;Watanabe, Kenji;Taniguchi, Takashi;Kim, Miyoung;Kim, Philip;Yi, Gyu-Chul
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.284-284
    • /
    • 2016
  • Topological insulator (TI) is a bulk-insulating material with topologically protected Dirac surface states in the band gap. In particular, $Bi_2Se_3$ attracted great attention as a model three-dimensional TI due to its simple electronic structure of the surface states in a relatively large band gap (~0.3 eV). However, experimental efforts using $Bi_2Se_3$ have been difficult due to the abundance of structural defects, which frequently results in the bulk conduction being dominant over the surface conduction in transport due to the bulk doping effects of the defect sites. One promising approach in avoiding this problem is to reduce the structural defects by heteroepitaxially grow $Bi_2Se_3$ on a substrate with a compatible lattice structure, while also preventing surface degradation by encapsulating the pristine interface between $Bi_2Se_3$ and the substrate in a clean growth environment. A particularly promising choice of substrate for the heteroepitaxial growth is hexagonal boron nitride (h-BN), which has the same two-dimensional (2D) van der Waals (vdW) layered structure and hexagonal lattice symmetry as $Bi_2Se_3$. Moreover, since h-BN is a dielectric insulator with a large bandgap energy of 5.97 eV and chemically inert surfaces, it is well suited as a substrate for high mobility electronic transport studies of vdW material systems. Here we report the heteroepitaxial growth and characterization of high quality topological insulator $Bi_2Se_3$ thin films prepared on h-BN layers. Especially, we used molecular beam epitaxy to achieve high quality TI thin films with extremely low defect concentrations and an ideal interface between the films and substrates. To optimize the morphology and microstructural quality of the films, a two-step growth was performed on h-BN layers transferred on transmission electron microscopy (TEM) compatible substrates. The resulting $Bi_2Se_3$ thin films were highly crystalline with atomically smooth terraces over a large area, and the $Bi_2Se_3$ and h-BN exhibited a clear heteroepitaxial relationship with an atomically abrupt and clean interface, as examined by high-resolution TEM. Magnetotransport characterizations revealed that this interface supports a high quality topological surface state devoid of bulk contribution, as evidenced by Hall, Shubnikov-de Haas, and weak anti-localization measurements. We believe that the experimental scheme demonstrated in this talk can serve as a promising method for the preparation of high quality TI thin films as well as many other heterostructures based on 2D vdW layered materials.

  • PDF