Browse > Article
http://dx.doi.org/10.4191/kcers.2012.49.6.485

Enhanced Sintering Behavior and Electrical Properties of Single Phase BiFeO3 Prepared by Attrition Milling and Conventional Sintering  

Jeon, Nari (Department of Materials Science and Engineering, Northwestern University)
Moon, Kyoung-Seok (Advanced Materials Research Center, Samsung Advanced Institute of Technology)
Rout, Dibyranjan (School of Applied Sciences (Physics), KIIT University)
Kang, Suk-Joong L. (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
Publication Information
Abstract
Dense and single phase $BiFeO_3$ (BFO) ceramics were prepared using attrition milled calcined (coarse) powders of an average particle size of ${\approx}3{\mu}m$ by conventional sintering process. A relative density of ${\approx}96%$ with average grain size $7.3{\mu}m$ was obtained when the powder compacts were sintered at $850^{\circ}C$ even for a shorter duration of 10 min. In contrast, densification barely occurred at $800^{\circ}C$ for up to 12 h rather the microstruce showed the growth of abnormal grains. The grain growth behavior at different temperatures is discussed in terms of nonlinear growth rates with respect to the driving force. The sample sintered at $850^{\circ}C$ for 12 h showed enhanced electrical properties with leakage current density of $4{\times}10^{-7}A/cm^2$ at 1 kV/cm, remnant polarization $2P_r$ of $8{\mu}C/cm^2$ at 20 kV/cm, and minimal dissipation factor (tan ${\delta}$) of ~0.025 at $10^6$ Hz. These values are comparable to the previously reported values obtained using unconventional sintering techniques such as spark plasma sintering and rapid liquid phase sintering.
Keywords
Bismuth ferrite; Sintering; Grain growth; Densification; Electrical properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Eerenstein, N. D. Mathur, and J. F. Scott, "Multiferroic and Magnetoelectric Materials," Nature, 442 [7104] 759-65 (2006).   DOI   ScienceOn
2 G. Catalan and J. F. Scott, "Physics and Applications of Bismuth Ferrite," Adv. Mater., 21 [24] 2463-85 (2009).   DOI
3 G. D. Achenbach, W. J. James, and R. Gerson, "Preparation of Single-phase Polycrystalline $BiFeO_3$," J. Am. Ceram. Soc., 50 [8] 437 (1967).   DOI
4 T. T. Carvalho and P. B. Tavares, "Synthesis and Thermodynamic Stability of Multiferroic $BiFeO_3$," Mater. Lett., 62 [24] 3984-86 (2008).   DOI
5 I. Szafraniak, M. Polomska, B. Hilczer, A. Pietraszko, and L Kepinski, "Characterization of $BiFeO_3$ Nanopowder Obtained by Mechanochemical Synthesis," J. Eur. Ceram. Soc., 27 [13-15] 4399-402 (2007).   DOI
6 F. Chen, Q. F. Zhang, J. H. Li, Y. J. Qi, C. J. Lu, X. B. Chen, X. M. Ren, and Y. Zhao, "Sol-gel Derived Multiferroic $BiFeO_3$ Ceramics with Large Polarization and Weak Ferromagnetism," Appl. Phys. Lett., 89 [9] 092910-3 (2006).   DOI
7 S. M. Selbach, M. A. Einarsrud, T. Tybell, and T. Grande, "Synthesis of $BiFeO_3$ by Wet Chemical Methods," J. Am. Ceram. Soc., 90 [11] 3430-34 (2007).   DOI
8 M. M. Kumar, V. R. Palkar, and K. Srinivas, "Suryanarayana SV. Ferroelectricity in a Pure $BiFeO_3$ Ceramic," Appl. Phys. Lett., 76 [19] 2764-66 (2000).   DOI   ScienceOn
9 D. Zhonghua and A. Yukikuni, "Electrical Properties of Multiferroic $BiFeO_3$ Ceramics Synthesized by Spark Plasma Sintering," J. Phys. D: Appl. Phys., 43 [44] 445403 (2010).   DOI   ScienceOn
10 R. Mazumder, D. Chakravarty, D. Bhattacharya, and A. Sen, "Spark Plasma Sintering of $BiFeO_3$," Mater. Res. Bull., 44 [3] 555-59 (2009).   DOI
11 Y. P. Wang, L. Zhou, M. F. Zhang, X. Y. Chen, J. M. Liu, and Z. G. Liu, "Room-temperature Saturated Ferroelectric Polarization in $BiFeO_3$ Ceramics Synthesized by Rapid Liquid Phase Sintering," Appl. Phys. Lett., 84 [10] 1731-33 (2004).   DOI
12 S. T. Zhang, M. H. Lu, D .Wu, Y. F. Chen, and N. B. Ming, "Larger Polarization and Weak Ferromagnetism in Quenched $BiFeO_3$ Ceramics with a Distorted Rhombohedral Crystal Structure," Appl. Phys. Lett., 87 [26] 262907 (2005).   DOI
13 D. Rout, K.-S. Moon, and S.-J. L. Kang, "Temperaturedependent Raman Scattering Studies of Polycrystalline $BiFeO_3$ Bulk Ceramics," J. Raman Spectrosc., 40 [6] 618-26 (2009).   DOI
14 M. Valant, A. K. Axelsson, and N. Alford, "Peculiarities of a Solid-state Synthesis of Multiferroic Polycrystalline $BiFeO_3$," Chem. Mater., 19 [22] 5431-36 (2007).   DOI
15 S. V. Kalinin, M. R. Suchomel, P. K. Davies, and D.A. Bonnell, "Potential and Impedance Imaging of Polycrystalline $BiFeO_3$ Ceramics," J. Am. Ceram. Soc., 85 [12] 3011-17 (2002).
16 N. Jeon, D. Rout, I. W. Kim, and S.-J. L. Kang, "Enhanced Multiferroic Properties of Single-phase $BiFeO_3$ Bulk Ceramics by Ho doping," Appl. Phys. Lett., 98 [7] 072901-3 (2011).   DOI
17 W. Schatt and K. P. Wieters, Powder Metallurgy, European Powder Metallurgy Association, Shrewsbury, UK, 1997.
18 S. Y. Chung, D. Y. Yoon, and S.-J. L. Kang, "Effects of Donor Concentration and Oxygen Partial Pressure on Interface Morphology and Grain Growth Behavior in $SrTiO_3$," Acta Mater., 50 [13] 3361-71(2002).   DOI
19 K. S. Moon and S.-J. L. Kang, "Coarsening Behavior of Round-edged Cubic Grains in the $Na_{1/2}Bi_{1/2}TiO_3-BaTiO_3$ System," J. Am. Ceram. Soc., 91 [10] 3191-96 (2008).   DOI
20 J. G. Fisher, M. S. Kim, H. Y. Lee, and S.-J. L. Kang, "Effect of $Li_2O$ and PbO Additions on Abnormal Grain Growth in the $Pb(Mg_{1/3}Nb_{2/3})O_3$-35 mol%$PbTiO_3$ System," J. Am. Ceram. Soc., 87 [5] 937-42 (2004).   DOI
21 S. M. An and S.-J. L. Kang, "Boundary Structural Transition and Grain Growth Behavior in $BaTiO_3$ with $Nd_2O_3$ Doping and Oxygen Partial Pressure Change," Acta Mater., 59 [5] 1964-73 (2011).   DOI   ScienceOn
22 C. Rottman, "Roughening of Low-angle Grain-boundaries," Phys. Rev. Lett., 57 [6] 735-38 (1986).   DOI
23 T. E. Hsieh and R. W. Balluffi. "Observation of Roughening/ de-faceting Phase Transitions in Grain Boundaries," Acta Metall., 37 [8] 2133-9 (1989).   DOI
24 S. B. Lee, W. Sigle, W. Kurtz, and M. Ruhle, "Temperature Dependence of Faceting in ${\Sigma}$ 5(310)[001] Grain Boundary of $SrTiO_3$," Acta Mater., 51 [4] 975-81 (2003).   DOI
25 Y. I. Jung, S. Y. Choi, and S.-J. L. Kang, "Effect of Oxygen Partial Pressure on Grain Boundary Structure and Grain Growth Behavior in $BaTiO_3$," Acta Mater., 54 [10] 2849-55 (2006).   DOI
26 J. M. Howe, Interfaces in Materials, John Wiley & Sons, New York, 1997
27 H. van Beijeren. "Exactly Solvable Model for the Roughening Transition of a Crystal Surface," Phys. Rev. Lett., 38 [18] 993-96 (1977).   DOI
28 K. L. Merkle and L. J. Thompson, "Atomic-scale Observation of Grain Boundary Motion," Mater. Lett., 48 [3-4] 188-93 (2001).   DOI
29 S. E. Babcock and R. W. Balluffi, "Grain Boundary Kinetics-- II. In Situ Observations of the Role of Grain Boundary Dislocations in High-angle Boundary Migration," Acta Metall., 37 [9] 2367-76 (1989).   DOI
30 H. Gleiter, "The Mechanism of Grain Boundary Migration," Acta Metall., 17 [5] 565-73(1969).   DOI
31 D. Y. Yoon, C. W. Park, and J. B. Koo. "The Step Growth Hypothesis for Abnormal Grain Growth"; pp. 3-21 in Ceramic Interfaces Vol. 2, Ed. by H. I. Yoo and S.-J. L. Kang, Institute of Materials, London, 2001.
32 S. M. An, B. K. Yoon, S. Y. Chung, and S. -J. L. Kang, "Nonlinear Driving Force-velocity Relationaship for the Migration of Faceted Boundaries," Acta Mater., 60 [11] 4531-39 (2012).   DOI
33 Y. I. Jung, S.-J. L. Kang, and D. Y. Yoon, "Coarsening of Polyhedral Grains in a Liquid Matrix," J. Mater. Res., 24 [9] 2949-59 (2009).   DOI
34 S.-J. L. Kang, M. G. Lee, and S. M. An, "Microstructural Evolution during Sintering with Control of the Interface Structure," J. Am. Ceram. Soc., 92 [7] 1464-71 (2009).   DOI
35 S. Y. Choi and S.-J. L. Kang, "Sintering Kinetics by Structural Transition at Grain Boundaries in Barium Titanate," Acta Mater., 52 [10] 2937-43 (2004).   DOI
36 M. G. Lee, S. Y. Chung, and S.-J. L. Kang, "Boundary Faceting- dependent Densification in a $BaTiO_3$ Model System," Acta Mater., 59 [2] 692-98 (2011).   DOI
37 J. C. Chen, J. M. Wu, "Dielectric Properties and Ac Conductivities of Dense Single-phased $BiFeO_3$ Ceramics," Appl. Phys. Lett., 91 [18] 182903-5 (2007).   DOI
38 B. Yu, M. Li, J. Liu, D. Guo, L. Pei, and Z. Zhao, "Effects of Ion Doping at Different Sites on Electrical Properties of Multiferroic $BiFeO_3$ Ceramics," J. Phys. D: Appl. Phys., 41 [6] 065003 (2008).   DOI
39 A. Z. Simoes, F. G. Garcia, and C. D. S. Riccardi. "Rietveld Analysys and Electrical Properties of Lanthanum Doped $BiFeO_3$ Ceramics," Mater. Chem. Phys., 116 [2-3] 305-9 (2009).   DOI
40 Z. Yan, K. F. Wang, J. F. Qu, Y. Wang, Z. T. Song, and S. L. Feng. "Processing and Properties of Yb-doped $BiFeO_3$ ceramics," Appl. Phys. Lett., 91[8] 082906-3 (2007).   DOI
41 Y. P. Wang, G. L. Yuan, X. Y. Chen, J. M. Liu, and Z. G. Liu. "Electrical and Magnetic Properties of Single-phased and Highly Resistive Ferroelectromagnet $BiFeO_3$ Ceramic," J. Phys. D: Appl. Phys., 39 [10] 2019-23 (2006).   DOI
42 A.K. Pradhan, K. Zhang, D. Hunter, J. B. Dadson, G. B. Loiutts, P. Bhattacharya, R. Katiyar, J. Zhang, D. J. Sellmyer, U. N. Roy, Y. Cui, and A. Burger, "Magnetic and Electrical Properties of Single-phase Multiferroic $BiFeO_3$," J. Appl. Phys., 97 [9] 093903-4 (2005).   DOI
43 Y. Du, Z. X. Cheng, M. Shahbazi, E. W. Collings, A. X. Dou, and X. L. Wang, "Enhancement of Ferromagnetic and Dielectric Properties In Lanthanum Doped $BiFeO_3$ by Hydrothermal Synthesis. J. Alloys Compd., 490 [1-2] 637-41 (2010).   DOI
44 G. L. Yuan and S. W. Or. "Multiferroicity in Polarized Single- phase $Bi_{0.875}Sm_{0.125}FeO_3$ Ceramics," J. Appl. Phys., 100 [2] 024109-5 (2006).   DOI   ScienceOn
45 R. K. Mishra, D. K. Pradhan, R. N. P. Choudhary, A. Banerjee, "Effect of Yttrium on Improvement of Dielectric Properties and Magnetic Switching Behavior in $BiFeO_3$," J. Phys.: Condens. Matter., 20 [4] 45-218 (2008).