• Title/Summary/Keyword: Biot

Search Result 196, Processing Time 0.024 seconds

Optimization of a 3-D Thermally Asymmetric Rectangular Fin

  • Gang, Hyeong-Seok
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.11
    • /
    • pp.1541-1547
    • /
    • 2001
  • The non-dimensional fin length for optimum heat loss from a thermally asymmetric rectangular fin is represented as a function of the ratio of the bottom surface Biot number to the top surface Biot number, fin tip surface Biot number and the non-dimensional fin width. Optimum heat loss is taken as 98% of the maximum heat loss. For this analysis, three dimensional separation of variables method is used. Also, the relation between the ratio of the bottom surface Biot number to the top surface Biot number and the ratio of the right surface Biot number to the left surface Biot number is presented.

  • PDF

Optimization of a Convective Rectangular Profile Annular Fin (대류 직각 형상 환형 휜의 최적화)

  • 강형석;조철현
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • The rectangular profile annular fin with fixed volume is optimized using 2-dimensional analytic method. For a base boundary condition, convection from fluid within the pipe to the inside wall of the pipe and conduction from the inside wall of the pipe to the fin base are considered. Heat loss from the fin tip radius is not ignored. The maximum heat loss, the optimum fin tip radius and the optimum fin half thickness corresponding to the maximum heat loss are presented as a function of fin base radius, Biot number over the fin surface and Biot number within the pipe. Results show 1) the maximum heat loss increases as both Biot number over the fin surface and Biot number within the pipe increase and as fin base radius decreases 2) the optimum fin thickness increases as Biot number within the pipe decreases or as fin base radius and Biot number over the fin surface increase.

Three-Dimensional Performance Analysis of a Thermally Asymmetric Rectangular Fin

  • Kang, Hyung-Suk
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.2
    • /
    • pp.94-101
    • /
    • 2001
  • Fin effectiveness and efficiency of a thermally asymmetric rectangular fin are represented as a function of non-dimensional fin length, width, fip tip surface Biot number and the ratio of fin bottom surface Biot number to top surface Biot number. For this analysis, three dimensional separation of variables method is used. One of the results shows that fin effectiveness can be increased or decreased depending on the fin length as the fin tip surface Biot number increases while fin efficiency decreases without depending on that as the fin tip surface Biot number increases.

  • PDF

A Heat Transfer Analysis of a Thermally Asymmetric Triangular Fin; Based on Fin Tip Effect (열적 비대칭 삼각 핀의 열전달 해석; 핀 끝 효과에 기준)

  • Kang, Hyung-Suk
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.21-26
    • /
    • 2002
  • The non-dimensional heat loss from a thermally asymmetric triangular fin is investigated as a function of a ratio of upper and lower surface Biot numbers (Bi2/Bi1), the non-dimensional fin length and tip surface Biot number using the two-dimensional separation of variables method. The effect of fin tip surface Biot number on the variation of the non-dimensional temperature along the sloped upper and lower surfaces for the thermally asymmetric condition is presented. The relationship between the non-dimensional fin length and the fin tip surface Biot number for equal amount of heat loss is also discussed as well as the relationship between upper surface Biot number and tip surface Biot number for equal amount of heat loss.

  • PDF

Analysis of unsteady temperature distribution in a cylinder for rifle barrel disign (원통형 용기의 비정상온도해석)

  • ;;;Lee, Hung Joo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.3 no.4
    • /
    • pp.173-180
    • /
    • 1979
  • Temperature distriburion in a hollow chlinder has been analyzed mathematically. Unsteady condition considered assumed a constant heat flux input from the inside. The results are compared with experimental results of surface temperature rise of a gun barrel during continuous firing. Their agreements are acceptable. Effects of various dimensionless parameters on the surface temperature rise are discussed. For small Biot numbers, the external survface temperature approaches more rapidly to the steady temperature. Temperature difference between internal and external surfaces becomes greater for small Biot number. Steady solution assumed that the gas temperature inside the cylinder varies periodically. Relative amplitude and phase angles between the gas temperature and the internal or external surface temperature are obtained. Phase angles become smaller for large radiancy of gas temperature variation, small external Biot number, or large internal biot number. Relative amplitudes become samller as radiancy of gas temperature variation and internal Biot number become smaller. or external Biot number becomes larger. The solution obtained in this paper can be applied to gun barrels, heat pipes used in heat excangers, and reciprocation engines.

Performance Analysis of a Thermally Asymmetric Triangular Fin (열적 비대칭 삼각 휜의 성능해석)

  • Gang, Hyeong-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.66-73
    • /
    • 2002
  • Fin effectiveness and efficiency of a thermally asymmetric triangular fin are represented as a function of the ratio of fin lower surface Biot number to upper surface Biot number and the non-dimensional fin length. For this analysis, two dimensional separation of variables method is used. When fin effectiveness is 2 and efficiency is 90%, the relationship between the non-dimensional fin length and the ratio of fin lower stir(ace Biot number to upper surface Biot number is shown. The relationship between the non-dimensional fin length and the upper surface Biot number for the same condition is also presented.

Performance Analysis on the Trapezoidal Fins having Different Slope for Enhanced Heat Exchange (열교환 향상을 위한 경사각이 다른 사다리꼴 휜에 대한 성능해석)

  • 강형석;윤세창
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.3
    • /
    • pp.16-24
    • /
    • 1999
  • Performance of the trapezoidal fins having different upper side slope is investigated by the three dimensional analytic method. It is shown that one equation can be used to analyse the trapezoidal fins having different upper side slope by adjusting the slope factor only. The performances for these fins are represented as a function of the non-dimensional fin length, fin width, Biot number and the slope factor when the remaining variables are fixed arbitrarily. One of the results is that the fin effectiveness increases as Biot number, the non-dimensional fin width and the slope factor decrease and as the non-dimensional fin length increases in the case of Bi $\leq$ 0.1 but the trend of the fin shape effect on the effectiveness is somewhat irregular for higher Biot number(i.e. Bi = 0.3).

  • PDF

Laboratory Evaluation of Soil Permeability for Sand Using Biot's Acoustic Wave Propagation Theory (Biot 음향 전파 이론을 이용한 실내 사질 시료의 투수계수 산정)

  • Kim, Jin-Won;Song, Chung-Rak
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.5-12
    • /
    • 2008
  • Biot proposed the frequency dependent formulation for the propagation of elastic waves in saturated media based on the coupled theory mixtures. Based on Biot theory, a special frequency called 'the characteristic frequency' contains unique information of the permeability of soils. The characteristic frequency is measured from I/Q (inverse quality factor) versus frequency curve by an acoustic sweep test, and the permeability of soils is computed from Biot equation. In this paper, laboratory tests are performed at The University of Mississippi using a large test box. The measured characteristic frequency is consistently obtained at 3500 Hz for mortar sands. The computed permeability of mortar sands based on Biot equation turned out 2.01 $10^{-4}m/sec$, while the permeability from the laboratory constant head test turned out 1.49 $10^{-4}m/sec$. This paper addresses the theoretical background and experimental procedure of this technique.

Measurement of the Plane Wave Reflection Coefficient for the Saturated Granular Medium in the Water Tank and Comparison to Predictions by the Biot Theory (수조에서 입자 매질의 평면파 반사계수 측정과 Biot 이론에 의한 예측)

  • Lee Keun-Hwa
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.5
    • /
    • pp.246-256
    • /
    • 2006
  • The plane wave reflection coefficient is an acoustic property containing all the information concerning the ocean bottom and can be used as an input parameter to various acoustic propagation models. In this paper, we measure the plane wave reflection coefficient, the sound speed, thd the attenuation for saturated granular medium in the water tank. Three kinds of glass beads and natural sand are used as the granular medium. The reflection experiment is performed with the sinusoidal tone bursts of 100 kHz at incident angles from 28 to 53 degrees, and the sound speed and attenuation experiment are performed also with the same signal. From the measured reflection signal, the reflection coefficient is calculated with the self calibration method and the experimental uncertainties are discussed. The sound speed and the attenuation measurements are used for the estimation of the porosity and permeability, the main Biot parameters. The estimated values are compared to the directly measured values and used as input values to the Biot theory in order to calculate the theoretical reflection coefficient. Finally, the reflection coefficient predicted by Biot theory is compared to the measured reflection coefficient and their characteristics are discussed.

Optimization of a Thermally Asymmetric Rectangular Fin: Based on Fixed Fin Height

  • Kang, Hyung-Suk
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.3
    • /
    • pp.145-151
    • /
    • 2005
  • A thermally asymmetric straight rectangular fin is analysed and optimized using the two-dimensional separation of variables method. The optimum heat loss is presented as a function of bottom to top Biot number ratio, fin base length and top Biot number. Decreasing rate of the optimum fin length with the increase of the fin base length is listed. The optimum fin tip length is shown as a function of bottom to top Biot number ratio, fin base length and tip to top Biot number ratio. One of the results shows that the optimum heat loss and the actual optimum fin length decrease while the optimum fin tip length increases as the fin base length increases.