Browse > Article

Measurement of the Plane Wave Reflection Coefficient for the Saturated Granular Medium in the Water Tank and Comparison to Predictions by the Biot Theory  

Lee Keun-Hwa (서울대학교 공과대학 조선해양공학과)
Abstract
The plane wave reflection coefficient is an acoustic property containing all the information concerning the ocean bottom and can be used as an input parameter to various acoustic propagation models. In this paper, we measure the plane wave reflection coefficient, the sound speed, thd the attenuation for saturated granular medium in the water tank. Three kinds of glass beads and natural sand are used as the granular medium. The reflection experiment is performed with the sinusoidal tone bursts of 100 kHz at incident angles from 28 to 53 degrees, and the sound speed and attenuation experiment are performed also with the same signal. From the measured reflection signal, the reflection coefficient is calculated with the self calibration method and the experimental uncertainties are discussed. The sound speed and the attenuation measurements are used for the estimation of the porosity and permeability, the main Biot parameters. The estimated values are compared to the directly measured values and used as input values to the Biot theory in order to calculate the theoretical reflection coefficient. Finally, the reflection coefficient predicted by Biot theory is compared to the measured reflection coefficient and their characteristics are discussed.
Keywords
Plane wave reflection coefficient; Biot theory; Self calibration method; Estimation of biot parameters;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. W. Holland and J. Osler, 'High-resolution geoacoustic inversion in shallow water: A joint time- and frequencydomain technique,' J. Acoust. Soc. Am. 107 (3), 1263-1279, 2000   DOI   ScienceOn
2 H. P. Bucker, 'Sound propagation in a channel with lossy boundary,' J. Acoust. Soc. Am. 48 (3), 1187-1194, 1970   DOI
3 F. B. Jenson et al., Computational ocean acoustics (AIP, New York, 1994)
4 R. D. Costley and A. Bedford, 'An experimental study of acoustic waves in saturated glass beads,' J. Acoust. Soc. Am. 83 (6), 2165-2174, 1988   DOI
5 M J. Buckingham and M D. Richardson, 'On tone-burst measurements of sound speed and attenuation in sandy rrarine sediments,' IEEE J. Oceanic Eng. 27 (3), 429-453, 2002   DOI   ScienceOn
6 C. W. Holland, 'Seabed reflection measurement uncertainty: J. Acoust. Soc. Am. 114 (4), 1861-1873, 2003   DOI   ScienceOn
7 E. L. Hamilton. 'Geoacoustic modeling of the sea floor,' J. Acoust. Soc. Am. 68 (5), 1313-1340, 1980   DOI   ScienceOn
8 K. Lee and W. Seong, 'A simplified pseudo-fluid model derived from Biot theory through low grazing angle approximation,' IEEE J. Oceanic Eng. 27 (3), 651-659, 2005
9 K. L. Williams et al., 'Comparison of sound speed and attenuation measured in a sandy sediment to predictions based on the Biot theory of porous media: IEEE J. Oceanic Eng. 27 (3), 413-428, 2002   DOI   ScienceOn
10 P. D. Mourad and D. R. Jackson, 'High frequency sonar equation models for bottom backscatter and forward loss: in Proc. Ocean' 89, 1168-1175, 1989
11 C. H. Harrison and P. L. Nielsen, 'Plane wave reflection coefficient from near field measurements,' J. Acoust. Soc. Am. 116 (3),1355-1361,2004   DOI   ScienceOn
12 R. D. Stoll, Sediment scoustios (Springer-Verlag, NY, 1989)
13 K. Lee and W. Seong, 'Hybrid depth solver for the wavenumber integration technique in an ocean with a porous bottom,' (in preparation)
14 M. D. Richardson et al., 'Dynamic measurement of sediment grain compressibility at atmospheric pressure : acoustic applications: IEEE J. Oceanic Eng. 27 (3), 593-601, 2002   DOI   ScienceOn
15 M. Isakson et al., 'Acoustic reflection and transmission experiments from 4.5 to 50 kHz at the sediment acoustics experiment 2004 (SAX04),' in Proc. Underwater acoustic measurements: technologies and results, 2005
16 A. Turgut and T. Yamamoto, 'Measurements of acoustic wave velocities and attenuation in marine sediments,' J. Acoust. Soc. Am. 87 (6), 2376-2383, 1990   DOI
17 M. A. Biot, 'Theory of propagation of elastic waves in a fluid-saturated porous solid,' J. Acoust. Soc. Am. 28 (1), 168-191, 1956   DOI
18 L. M. Brekhovskikh, Waves in layered media (Academic Press, New York, 1980)
19 E. K. Westwood, 'Complex ray methods for acoustic interaction at a fluid-fluid interface', J. Acoust. Soc. Am. 85 (5), 1872-1884, 1989   DOI
20 K. Ohkawa at al., 'Acoustic backscattering from a sandy seabed,' IEEE J. Oceanic Eng. 30 (4), 700-708, 2005   DOI   ScienceOn
21 N. P. Chotiros, 'An inversion for Biot parameters in water-saturated sand,' J. Acoust. Soc. Am. 112 (5), 1853-1868, 2002   DOI   ScienceOn
22 이근화, 성우제, '지질 음향 자료의 수중 음전달 모델링 적용', 한국음향학학회 수중음향학 학술발표회논문집. 87-90. 2002
23 H. Medwin and C. S. Clay, Fundamentals of acoustical oceanography (Academic Press, Boston, 1998)
24 K. L. Williams, 'An effective density fluid model for acoustic propagation in sediments derived from Biot theory: J. Acoust. Soc. Am. 110 (5), 2276-2281, 2001   DOI   ScienceOn
25 C. Park, W. Seong, and P. Gerstoft, 'Geoacoustic inversion in time domain using ship of opportunity noise recorded on a horizontal towered array,' J. Acoust. Soc. Am. 117 (4), 1933-1941, 2005   DOI   ScienceOn
26 C. W. Holland, J. Dettmer, and S. E. Dosso, 'A technique for measuring In-situ corrpressional wave speed dispersion in merine sediments,' IEEE J. Oceanic Eng. 30 (4), 748- 768, 2005   DOI   ScienceOn
27 이근화, 하용훈, 성우제 '모형 도파관에서 수중음향 실험의 설계와 측정', 한국음향학회 춘계학술발표대회 논문집, 79-82, (2005)
28 D. L. Johnson, J. Koolik, and R. Dashen, 'Theory of dynamic permeability and tortuosity in fluid-saturated porous media,' J. Fluid Mech. 176 (1), 379-402, 1987   DOI   ScienceOn
29 N. P. Chotiros, 'Normal incidence reflection loss from a sandy sediment: J. Acoust. Soc. Am. 112 (5), 1831-1841, 2002   DOI