• Title/Summary/Keyword: Biosynthetic gene cluster

Search Result 86, Processing Time 0.032 seconds

Biosynthesis of 3-Hydroxy-5-Methyl-O-Methyltyrosine in the Saframycin/Safracin Biosynthetic Pathway

  • Fu, Cheng-Yu;Tang, Man-Cheng;Peng, Chao;Li, Lei;He, Yan-Ling;Liu, Wen;Tang, Gong-Li
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.5
    • /
    • pp.439-446
    • /
    • 2009
  • The biosynthesis study of antibiotics saframycin (SFM) in Streptomyces lavendulae and safracin (SAC) in Pseudomonas fluorescens demonstrated that 3-hydroxy-S-methyl-O-methyltyrosine (3hSmOmTyr), a nonproteinogenic amino acid, is the precursor of the tetrahydroisoquinoline molecular core. In the biosynthetic gene cluster of SAC/SFM, sacD/sfmD encodes a protein with high homology to each other but no sequence similarity to other known enzymes; sacF/sfmM2 and sacG/sfmM3 encode methyltransferases for C-methylation and O-methylation; and sacE/sfinF encodes a small protein with significant sequence similarity to the MbtH-like proteins, which are frequently found in the biosynthetic pathways of non ribosomal peptide antibiotics and siderophores. To address their function, the biosynthetic cassette of 3h5mOmTyr was heterologously expressed in S. coelicolor and P. putida, and an in-frame deletion and complementation in trans were carried out. The results revealed that (i) SfmD catalyzes the hydroxylation of aromatic rings; (ii) sacD/sacF/sacG in the SAC gene cluster and sfmD/sfmM2/sfmM3 in the SFM cluster are sufficient for the biosynthesis of 3h5mOmTyr; and (iii) the mbtH-like gene is not required for the biosynthesis of the 3h5mOmTyr precursor.

Isolation of Novel Pseudonocardia Polyene Biosynthetic Genes via Genomics-based PCR Screening

  • Lee, Mi-Yeon;Hwang, Young-Bin;Park, Hyun-Joo;Han, Kyu-Boem;Kim, Eung-Soo
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.396-397
    • /
    • 2005
  • The polyene antibiotics are a family of most promising antifungal polyketide compounds, typically produced by actinomycetes species. Using the polyene CYP-specific PCR screening with served actinomycetes genomic DNAs, Pseudonocardia autotrophica strain was identified to contain a unique polyene-specific CYP gene. The genomic DNA library screening using the polyene-specific CYP gene probe revealed the positive cosmid clone containing an approximately 34.5 kb DNA fragment revealed a total of seven complete and two incomplete open reading frame (ORFs), which are highly homologous but unique to previously-known polyene biosynthetic genes. These results suggest that the polyene-specific screening approach should be an efficient way of isolating potectially-valuable cryptic polyene biosynthetic gene cluster from various rare actinomycetes.

  • PDF

Synthetic Biology Tools for Novel Secondary Metabolite Discovery in Streptomyces

  • Lee, Namil;Hwang, Soonkyu;Lee, Yongjae;Cho, Suhyung;Palsson, Bernhard;Cho, Byung-Kwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.5
    • /
    • pp.667-686
    • /
    • 2019
  • Streptomyces are attractive microbial cell factories that have industrial capability to produce a wide array of bioactive secondary metabolites. However, the genetic potential of the Streptomyces species has not been fully utilized because most of their secondary metabolite biosynthetic gene clusters (SM-BGCs) are silent under laboratory culture conditions. In an effort to activate SM-BGCs encoded in Streptomyces genomes, synthetic biology has emerged as a robust strategy to understand, design, and engineer the biosynthetic capability of Streptomyces secondary metabolites. In this regard, diverse synthetic biology tools have been developed for Streptomyces species with technical advances in DNA synthesis, sequencing, and editing. Here, we review recent progress in the development of synthetic biology tools for the production of novel secondary metabolites in Streptomyces, including genomic elements and genome engineering tools for Streptomyces, the heterologous gene expression strategy of designed biosynthetic gene clusters in the Streptomyces chassis strain, and future directions to expand diversity of novel secondary metabolites.

Transcription Analysis of Daptomyc in Biosynthetic Genesin Streptomyces roseosporus

  • Rhee, Ki-Hyeong;Davies, Julian
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.12
    • /
    • pp.1841-1848
    • /
    • 2006
  • Insights into gene expression have the potential for improvement of antibiotic yield and the development of robust production hosts for use in recombinant biomolecule production. $Cubicin^{TM}$ (daptomycin for injection) is a recently approved antibiotic active against many Gram(+) pathogens, including those resistant to methicillin, vancomycin, and fluoroquinolones. Daptomycin is produced as a secondary metabolite by Streptomyces roseosporus. A 128 kb region of DNA including the daptomycin biosynthetic gene cluster (dpt) has been cloned. and sequenced. Using a selected array of nucleic acid probes representing this region, we compared the expression levels of the dpt genes between S. roseosporus wild-type (WT) and derived S. roseosporus high-producer of daptomycin (HP). We observed that the majority of the biosynthetic genes were upregulated in HP compared with WT; a total of 12 genes, including those encoding daptomycin synthetase, showed consistently and significantly higher expression levels, at least 5-fold, in HP compared with WT. In contrast, some genes, flanking the dpt cluster, were expressed at higher levels in the WT strain. The expression of housekeeping genes such as S. roseosporus rpsL, rpsG, and 16S (positive controls) and presumptive intergenic regions in the dpt cluster (negative control) were identical in the two strains. In addition, we compared transcription during the early, mid-log, and early-stationary phases of growth in the HP strain. The same set of genes was upregulated and downregulated under all conditions examined; housekeeping genes showed no relative change in expression level over the periods of growth tested. Analyses of this type would be of value in studies of strain improvement and also for the identification of gene regulation processes that are important for secondary metabolite production.

A Genome-Wide Analysis of Antibiotic Producing Genes in Streptomyces globisporus SP6C4

  • Kim, Da-Ran;Kwak, Youn-Sig
    • The Plant Pathology Journal
    • /
    • v.37 no.4
    • /
    • pp.389-395
    • /
    • 2021
  • Soil is the major source of plant-associated microbes. Several fungal and bacterial species live within plant tissues. Actinomycetes are well known for producing a variety of antibiotics, and they contribute to improving plant health. In our previous report, Streptomyces globisporus SP6C4 colonized plant tissues and was able to move to other tissues from the initially colonized ones. This strain has excellent antifungal and antibacterial activities and provides a suppressive effect upon various plant diseases. Here, we report the genome-wide analysis of antibiotic producing genes in S. globisporus SP6C4. A total of 15 secondary metabolite biosynthetic gene clusters were predicted using antiSMASH. We used the CRISPR/Cas9 mutagenesis system, and each biosynthetic gene was predicted via protein basic local alignment search tool (BLAST) and rapid annotation using subsystems technology (RAST) server. Three gene clusters were shown to exhibit antifungal or antibacterial activity, viz. cluster 16 (lasso peptide), cluster 17 (thiopeptide-lantipeptide), and cluster 20 (lantipeptide). The results of the current study showed that SP6C4 has a variety of antimicrobial activities, and this strain is beneficial in agriculture.

Conservation of the Epothilone-Biosynthetic Genes in Sorangium cellulosum Strains (Sorangium cellulosum 균주들의 에포틸론 생합성 유전자 보존)

  • Hyun, Hye-Sook;Youn, Jin-Kwon;Cho, Kung-Yun
    • Korean Journal of Microbiology
    • /
    • v.47 no.2
    • /
    • pp.170-173
    • /
    • 2011
  • The epothilone biosynthetic gene cluster (epoA~F, epoK) of Sorangium cellulosum KYC3013, an epothilone producing myxobacterium isolated in Korea, was cloned. When the amino acid sequences of the encoded proteins were compared with those from S. cellulosum SMP44, S. cellulosum So ce90, and S. cellulosum So0157-2, which were isolated in other continents or country, the proteins from different strains were 97.4-99.8% identical each other. This suggested that the epothilone-biosynthetic gene clusters are well conserved in S. cellulosum strains.