Browse > Article

Transcription Analysis of Daptomyc in Biosynthetic Genesin Streptomyces roseosporus  

Rhee, Ki-Hyeong (CollegeofIndustrialSciences,KongjuNationalUniversity)
Davies, Julian (UniversityofBritishColumbia)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.12, 2006 , pp. 1841-1848 More about this Journal
Abstract
Insights into gene expression have the potential for improvement of antibiotic yield and the development of robust production hosts for use in recombinant biomolecule production. $Cubicin^{TM}$ (daptomycin for injection) is a recently approved antibiotic active against many Gram(+) pathogens, including those resistant to methicillin, vancomycin, and fluoroquinolones. Daptomycin is produced as a secondary metabolite by Streptomyces roseosporus. A 128 kb region of DNA including the daptomycin biosynthetic gene cluster (dpt) has been cloned. and sequenced. Using a selected array of nucleic acid probes representing this region, we compared the expression levels of the dpt genes between S. roseosporus wild-type (WT) and derived S. roseosporus high-producer of daptomycin (HP). We observed that the majority of the biosynthetic genes were upregulated in HP compared with WT; a total of 12 genes, including those encoding daptomycin synthetase, showed consistently and significantly higher expression levels, at least 5-fold, in HP compared with WT. In contrast, some genes, flanking the dpt cluster, were expressed at higher levels in the WT strain. The expression of housekeeping genes such as S. roseosporus rpsL, rpsG, and 16S (positive controls) and presumptive intergenic regions in the dpt cluster (negative control) were identical in the two strains. In addition, we compared transcription during the early, mid-log, and early-stationary phases of growth in the HP strain. The same set of genes was upregulated and downregulated under all conditions examined; housekeeping genes showed no relative change in expression level over the periods of growth tested. Analyses of this type would be of value in studies of strain improvement and also for the identification of gene regulation processes that are important for secondary metabolite production.
Keywords
Streptomyces roseosporus; daptomycin; biosyntheticgne cluster; DNA microarray techniques; calcium-dependent lipopeptide antibiotic (CDA);
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
1 Bush, L., J. A. M. Boscia, and D. Kaye. 1998. Daptomycin (LY146032) treatment of experimental Enterococcal endocarditis. Antimicrob. Agents Chemother. 32: 877-881
2 Debono, M., B. J. Abbott, R. M. Molly, D. S. Fukuda, A. H. Hunt, V. M. Daupert, F. T. Counter, J. L. Ott, C. B. Carrell, and L. C. Howard. 1988. Enzymatic and chemical modifications of lipopeptide antibiotic A21978C: The synthesis and evaluation of daptomycin (LY146032). J. Antibiot. (Tokyo) 41: 1093-1105   DOI
3 Kim, S., J. S. Kang, D. D. Jang, K. K. Lee, S. A. Kim, B. S. Han, and Y. I. Park. 2004. Differential gene expression in estradiol-3-benzoate-treated liver and chemically-induced hepatocellular carcinoma. J. Microbiol. Biotechnol. 14: 1286- 1294
4 Lee, M. L., F. C. Kuo, G. A. Whitmore, and J. Sklar. 2000. Importance of replication in microarray gene expression studies: Statistical methods and evidence from repetitive cDNA hybridizations. Proc. Nat. Acad. Sci. USA 97: 9834- 9839
5 Miao, V., M.-F. Coeffet-Le Gal, P. Brian, R. Brost, J. Penn, A. Whiting, S. Martin, R. Ford, R. Parr, M. Bouchard, C. J. Silva, S. K. Wrigley, and R. H. Baltz. 2005. Daptomycin biosynthesis in Streptomyces roseosporus: Cloning and analysis of the gene cluster and revision of peptide stereochemistry. Microbiology 151: 1507-1523   DOI   ScienceOn
6 Takano, E., H. C. Gramajo, E. Strauch, N. Andres, J. White, and M. J. Bibb. 1992. Transcriptional regulation of the redD transcriptional activator gene accounts for growth-phase dependent production of the antibiotic undecylprodigiosin in Streptomyces coelicolor A3(2). Mol. Microbiol. 6: 2797- 2804   DOI   ScienceOn
7 Wang, H. Y., L. M. Renae, E. K. Anne, S. G. Andrew, V. L. Truong, B. Babak, F. Bryan, Q. John, and N. H. Lee. 2003. Assessing unmodified 70-mer oligonucleotide probe performance on glass-slide microarrays. Genome Biol. 4: R5   DOI
8 Zhang, Y. X., K. Perry, V. A. Vinci, K. Powell, W. P. Stemmer, and S. B. del Cardayre. 2002. Genome shuffling leads to rapid phenotype improvement in bacteria. Nature 415: 644-646   DOI   ScienceOn
9 Hu, H. and K. Ochi. 2001. Novel approach for improving the productivity of antibiotic-producing strains by inducing combined resistant mutations. Appl. Environ. Microbiol. 67: 1885-1892   DOI   ScienceOn
10 David, Y., C. W. James, and G. R. Jose-Carlos. 2001. Microarray for studying the host transcriptional response to microbial infection and for the identification of host drug targets. Microb. Infect. 3: 813-821   DOI   ScienceOn
11 Lee, S. H. and Y. T. Rho. 1999. Improvement of tylosin fermentation by mutation and medium optimization. Lett. Appl. Microbiol. 28: 142-144   DOI   ScienceOn
12 Bucca, G. B., A. M. Brassington, G. Hotchkiss, V. Mersinias, and C. P. Smith. 2003. Negative feedback regulation of DnaK, clpB, and Ion expression by the DnaK chaperone machine in Streptomyces coelicolor, identified by transcriptome and in vivo DnaK-depletion analysis. Mol. Microbiol. 50: 153-166   DOI   ScienceOn
13 Garrison, M. W., K. Vance-Bryan, T. A. Larson, J. P. Toscano, and J. C. Rotschafer. 1990. Assessment of effects of protein binding on daptomycin and vancomycin killing of Staphylococcus aureus by using an in vitro pharmacodynamic model. Antimicrob. Agents Chemother. 31: 625-629
14 McHenney, M. A., T. J. Hosted, B. S. Dehoff, P. R. Rosteck, and R. H. Baltz. 1998. Molecular cloning and physical mapping of the daptomycin gene cluster from Streptomyces roseosporus. J. Bacteriol. 180: 143-151
15 Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press. Cold Spring Harbor, N.Y
16 Oh, K. S., O. S. Kwon, Y. W. Oh, M. J. Sohn, S. G. Jung, Y. K. Kim, M. G. Kim, S. K. Rhee, G. Gellissen, and H. A. Kang. 2004. Fabrication of partial genome microarray of the methylotrophic yeast Hansenula polymorpha: Optimization and evaluation of transcript profiling. J. Microbiol. Biotechnol. 14: 1239-1248
17 Rybak, M. J., E. Hershberger, E. T. Moldovan, and R. G. Grucz. 2000. In vitro activities of daptomycin, vancomycin, linezolid, and quinopristin-dalfopristin against Staphylococci and Enterococci, including vancomycin intermediate and resistant strains. Antimicrob. Agents Chemother. 34: 2081- 2085
18 Seto, M., E. Masai, M. Ida, T. Hatta, K. Kimbara, M. Fukuda, and K. Yano. 1995. Multiple polychlorinated biphenyl transformation systems in the gram-positive bacterium Rhodococcus sp. strain RHA1. Appl. Environ. Microbiol. 61: 4510-4513
19 Debono, M., C. B. Barnhart, J. A. Carrell, J. L. Hoffman, B. J. Occolowitz, B. J. Abbott, D. S. Fukuda, and R. L. Hamill. 1987. A21978C, a complex of new acidic peptide antibiotics: Isolation, chemistry, and mass spectral structure elucidation. J. Antibiot. 40: 761-777   DOI
20 Huang, J., C. J. Lih, K. H. Pan, and S. N. Cohen. 2001. Global analysis of growth phase responsive gene expression and regulation of antibiotic biosynthetic pathways in Streptomyces coelicolor using DNA microarray. Gene Develop. 15: 3183-3192   DOI   ScienceOn
21 Baltz, R. H. 1997. Lipopeptide antibiotics produced by Streptomyces roseosporus and Streptomyces fradiae, pp. 415-435. In W. R. Strohl (ed.). Biotechnology of Antibiotics, 2nd Ed. Marcel Dekker, Inc., New York
22 McHenney, M. A. and R. H. Baltz. 1996. Gene transfer and transposition mutagenesis in Streptomyces roseosporus: Mapping of insertions that influence daptomycin or pigment production. Microbiology 142: 2363-2373   DOI   ScienceOn
23 Nelson, C. C., D. Hoffart, E. M. Gleave, and P. S. Rennie. 2003. Application of gene microarray in the study of prostate cancer. Methods Mol. Med. 81: 299-320
24 Lal, R., R. Khanna, H. Kaur, M. Khanna, N. Dhingra, S. Lal, K. H. Gartemann, R. Eichenlaub, and P. K. Ghosh. 1996. Engineering antibiotic producers to overcome the limitations of classical strain improvement programs. Crit. Rev. Microbiol. 22: 201-255   DOI
25 Demain, A. L. and J. E. Davies. 1999. Manual of Industrial Microbiology and Biotechnology. ASM Press, Washington, D.C
26 Ryding N. J., T. B. Anderson, and W. C. Champness. 2002. Regulation of the Streptomyces coelicolor calciumdependent antibiotic by absA, encoding a cluster-linked twocomponent system. J. Bacteriol. 184: 794-805   DOI
27 Wagner, V. E., D. Bushnell, L. Passador, A. I. Brooks, and B. H. Iglewski. 2003. Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: Effects of growth phase and environment. J. Bacteriol. 185: 2080-2095   DOI
28 Borovok, I., R. Kreisberg-Zakarin, M. Yanko, R. Schreiber, M. Myslovati, F. Aslund, A. Holmgren, G. Cohen, and Y. Aharonowitz. 2002. Streptomyces spp. contain class Ia and class II ribonucleotide reductases: Expression analysis of the vegetative growth. Microbiology 148: 391-404   DOI
29 Lee, J. Y. and N. G. Lee. 2004. Transcriptional responses of human respiratory epithelial cells to nontypeable Haemophilus influenzae infection analyzed by high density cDNA microarrays. J. Microbiol. Biotechnol. 14: 836-843
30 Zhao, X., S. Nampalli, A. J. Serino, and S. Kumar. 2001. Immobilization of oligonucleotides with multiple anchors to microchips. Nucleic Acids Res. 29: 955-959   DOI   ScienceOn