• Title/Summary/Keyword: Biosynthetic gene cluster

Search Result 86, Processing Time 0.025 seconds

Identification of the Phenalamide Biosynthetic Gene Cluster in Myxococcus stipitatus DSM 14675

  • Park, Suhyun;Hyun, Hyesook;Lee, Jong Suk;Cho, Kyungyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.9
    • /
    • pp.1636-1642
    • /
    • 2016
  • Phenalamide is a bioactive secondary metabolite produced by Myxococcus stipitatus. We identified a 56 kb phenalamide biosynthetic gene cluster from M. stipitatus DSM 14675 by genomic sequence analysis and mutational analysis. The cluster is comprised of 12 genes (MYSTI_04318- MYSTI_04329) encoding three pyruvate dehydrogenase subunits, eight polyketide synthase modules, a non-ribosomal peptide synthase module, a hypothetical protein, and a putative flavin adenine dinucleotide-binding protein. Disruption of the MYSTI_04324 or MYSTI_04325 genes by plasmid insertion resulted in a defect in phenalamide production. The organization of the phenalamide biosynthetic modules encoded by the fifth to tenth genes (MYSTI_04320-MYSTI_04325) was very similar to that of the myxalamid biosynthetic gene cluster from Stigmatella aurantiaca Sg a15, as expected from similar backbone structures of the two substances. However, the loading module and the first extension module of the phenalamide synthase encoded by the first to fourth genes (MYSTI_04326-MYSTI_04329) were found only in the phenalamide biosynthetic gene cluster from M. stipitatus DSM 14675.

Genetic localization of epicoccamide biosynthetic gene cluster in Epicoccum nigrum KACC 40642

  • Choi, Eun Ha;Park, Si-Hyung;Kwon, Hyung-Jin
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.3
    • /
    • pp.159-166
    • /
    • 2022
  • Epicoccum nigrum produces epipyrone A (orevactaene), a yellow polyketide pigment. Its biosynthetic gene cluster was previously characterized in E. nigrum KACC 40642. The YES liquid culture of this strain revealed high-level production of epicoccamide (EPC), with an identity that was determined using liquid chromatography-mass spectrometry analysis and molecular mass search using the SuperNatural database V2 webserver. The production of EPC was further confirmed by compound isolation and nuclear magnetic resonance spectroscopy. EPC is a highly reduced polyketide with tetramic acid and mannosyl moieties. The EPC structure guided us to localize the hypothetical EPC biosynthetic gene cluster (BGC) in E. nigrum ICMP 19927 genome sequence. The BGC contains genes encoding highly reducing (HR)-fungal polyketide synthase (fPKS)-nonribosomal peptide synthetase (NRPS), glycosyltransferase (GT), enoylreductase, cytochrome P450, and N-methyltrasnferase. Targeted inactivation of the HR-fPKS-NRPS and GT genes abolished EPC production, supporting the successful localization of EPC BGC. This study provides a platform to explore the hidden biological activities of EPC, a bolaamphiphilic compound.

Functional Analysis of Spectinomycin Biosynthetic Genes from Streptomyces spectabilis ATCC 27741

  • Jo, You-Young;Kim, Sun-Hee;Yang, Young-Yell;Kang, Choong-Min;Sohng, Jae-Kyung;Suh, Joo-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.6
    • /
    • pp.906-911
    • /
    • 2003
  • The function of genes related to spectinomycin biosynthesis (spcD, speA, speB, spcS2) from Streptomyces spectabilis ATCC 27741, a spectinomycin producer, was analyzed. Each gene was subcloned from a spectinomycin biosynthetic gene cluster and overexpressed in E. coli BL21 (DE3) using pET vector. After incubating each purified protein with its possible substrates, the final products were analyzed using high-performance liquid chromatography (HPLC). From these results, spcD, speA, and speB have been identified to be dTDP-glucose synthase, myo-inositol monophosphatase, and myo-inositol dehydrogenase, respectively. In addition, the results suggest that the spcS2 gene product functions downstream of the speB gene product in the biosynthetic pathway of spectinomycin. Taken together, the present study elucidates the early steps of the biosynthetic pathway for 6-deoxyhexose (6-DOH) part (actinospectose) and aminocyclitol part (actinamine) of spectinomycin.

Genetic and Functional Analyses of the DKxanthene Biosynthetic Gene Cluster from Myxococcus stipitatus DSM 14675

  • Hyun, Hyesook;Lee, Sunjin;Lee, Jong Suk;Cho, Kyungyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.7
    • /
    • pp.1068-1077
    • /
    • 2018
  • DKxanthenes are a class of yellow secondary metabolites produced by myxobacterial genera Myxococcus and Stigmatella. We identified a putative 49.5 kb DKxanthene biosynthetic gene cluster from Myxococcus stipitatus DSM 14675 by genomic sequence and mutational analyses. The cluster consisted of 15 genes (MYSTI_06004-MYSTI_06018) encoding polyketide synthases, non-ribosomal peptide synthases, and proteins with unknown functions. Disruption of the genes by plasmid insertion resulted in defects in the production of yellow pigments. High-performance liquid chromatography and liquid chromatography-tandem mass spectrometry analyses indicated that the yellow pigments produced by M. stipitatus DSM 14675 might be novel DKxanthene derivatives. M. stipitatus did not require DKxanthenes for the formation of heat-resistant viable spores, unlike Myxococcus xanthus. Furthermore, DKxanthenes showed growth inhibitory activity against the fungi Aspergillus niger, Candida albicans, and Rhizopus stolonifer.

Expression and Characterization of Trehalose Biosynthetic Modules in the Adjacent Locus of the Salbostatin Gene Cluster

  • Choeng, Yong-Hoon;Yang, Ji-Yeon;Delcroix, Gaetan;Kim, Yoon-Jung;Chang, Yong-Keun;Hong, Soon-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.10
    • /
    • pp.1675-1681
    • /
    • 2007
  • The pseudodisaccharide salbostatin, which consists of valienamine linked to 2-amino-1,5-anhydro-2-deoxyglucitol, is a strong trehalase inhibitor. From our Streptomyces albus ATCC 21838 genomic library, we identified thirty-two ORFs in a 37-kb gene cluster. Twenty-one genes are supposed to be a complete set of modules responsible for the salbostatin biosynthesis. Through sequence analysis of the gene cluster, some of the upstream gene products (SalB, SalC, SalD, SalE, and SalF) revealed functional resemblance with trehalose biosynthetic enzymes. On the basis of this rationale, we isolated the five genes (salB, salC, salD, salE, and salF) from the S. albus ATCC 21838 and cloned them into the expression vector pWHM3. We demonstrated the noticeable expression and accumulation of trehalose, using only the five upstream biosynthetic gene cluster of salbostatin, in the transformed Streptomyces lividans TK24. Finally, 490 mg/l trehalose was produced by fermentation of the transformant with sucrosedepleted R2YE media.

Isolation and Characterization of Kasugamycin Biosynthetic Genes from Streptomyces kasugaensis KACC 20262

  • JO YOU-YOUNG;LIU JING;JIN YING-YU;YANG YOUNG-YELL;SUH JOO-WON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.491-496
    • /
    • 2005
  • The biosynthetic gene cluster for the aminoglycoside antibiotic kasugamycin was isolated and characterized from the kasugamycin producing strain, Streptomyces kasugaensis KACC 20262. By screening a fosmid library using kasA, the gene encoding aminotransferase, we isolated a 22 kb DNA fragment. The fragment contained seventeen complete open reading frames (ORFs); one of these ORFs, kasD, was identified as the gene for dNDP-glucose 4,6-dehydratase, which catalyzes the conversion of dNDP-glucose to 4-keto-6-deoxy-dNDP-glucose. The enzyme showed a broad spectrum of substrate specificity. In addition, ksR was overexpressed in E. coli BL21 and proved to be a self-resistance gene against kasugamycin. These findings suggest that the isolated gene cluster is highly likely responsible for the biosynthesis of kasugamycin.

Analysis of a Prodigiosin Biosynthetic Gene Cluster from the Marine Bacterium Hahella chejuensis KCTC 2396

  • Kim, Doc-Kyu;Park, Yon-Kyoung;Lee, Jong-Suk;F. Kim, Ji-Hyun;Jeong, Hae-Young;Kim, Beom-Seok;Lee, Choong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.12
    • /
    • pp.1912-1918
    • /
    • 2006
  • Marine bacterium Hahella chejuensis KCTC 2396 simultaneously produced red antibiotic prodigiosin and undecylprodiginine. A complete set of the prodigiosin biosynthetic gene cluster has been cloned, sequenced, and successfully expressed in a heterologous host. Sequence analysis of the gene cluster revealed 14 ORFs showing high similarity to pig and red genes from Serratia spp. and Streptomyces coelicolor A3(2), respectively, and the gene organization was almost: similar to that of pig genes. These genes were named hap for Hahella prodigiosin, and determined to be transcribed as a single operon, by RT-PCR experiment. Based on the hap gene mutagenesis experiments and comparative analysis with pig and red genes, we propose a prodigiosin-biosynthetic pathway in KCTC 2396.

Evolutionary Explanation for Beauveria bassiana Being a Potent Biological Control Agent Against Agricultural Pests

  • Han, Jae-Gu
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.05a
    • /
    • pp.27-28
    • /
    • 2014
  • Beauveria bassiana (Cordycipitaceae, Hypocreales, Ascomycota) is an anamorphic fungus having a potential to be used as a biological control agent because it parasitizes a wide range of arthropod hosts including termites, aphids, beetles and many other insects. A number of bioactive secondary metabolites (SMs) have been isolated from B. bassiana and functionally verified. Among them, beauvericin and bassianolide are cyclic depsipeptides with antibiotic and insecticidal effects belonging to the enniatin family. Non-ribosomal peptide synthetases (NRPSs) play a crucial role in the synthesis of these secondary metabolites. NRPSs are modularly organized multienzyme complexes in which each module is responsible for the elongation of proteinogenic and non-protein amino acids, as well as carboxyl and hydroxyacids. A minimum of three domains are necessary for one NRPS elongation module: an adenylation (A) domain for substrate recognition and activation; a tholation (T) domain that tethers the growing peptide chain and the incoming aminoacyl unit; and a condensation (C) domain to catalyze peptide bond formation. Some of the optional domains include epimerization (E), heterocyclization (Cy) and oxidation (Ox) domains, which may modify the enzyme-bound precursors or intermediates. In the present study, we analyzed genomes of B. bassiana and its allied species in Hypocreales to verify the distribution of NRPS-encoding genes involving biosynthesis of beauvericin and bassianolide, and to unveil the evolutionary processes of the gene clusters. Initially, we retrieved completely or partially assembled genomic sequences of fungal species belonging to Hypocreales from public databases. SM biosynthesizing genes were predicted from the selected genomes using antiSMASH program. Adenylation (A) domains were extracted from the predicted NRPS, NRPS-like and NRPS-PKS hybrid genes, and used them to construct a phylogenetic tree. Based on the preliminary results of SM biosynthetic gene prediction in B. bassiana, we analyzed the conserved gene orders of beauvericin and bassianolide biosynthetic gene clusters among the hypocrealean fungi. Reciprocal best blast hit (RBH) approach was performed to identify the regions orthologous to the biosynthetic gene cluster in the selected fungal genomes. A clear recombination pattern was recognized in the inferred A-domain tree in which A-domains in the 1st and 2nd modules of beauvericin and bassianolide synthetases were grouped in CYCLO and EAS clades, respectively, suggesting that two modules of each synthetase have evolved independently. In addition, inferred topologies were congruent with the species phylogeny of Cordycipitaceae, indicating that the gene fusion event have occurred before the species divergence. Beauvericin and bassianolide synthetases turned out to possess identical domain organization as C-A-T-C-A-NM-T-T-C. We also predicted precursors of beauvericin and bassianolide synthetases based on the extracted signature residues in A-domain core motifs. The result showed that the A-domains in the 1st module of both synthetases select D-2-hydroxyisovalerate (D-Hiv), while A-domains in the 2nd modules specifically activate L-phenylalanine (Phe) in beauvericin synthetase and leucine (Leu) in bassianolide synthetase. antiSMASH ver. 2.0 predicted 15 genes in the beauvericin biosynthetic gene cluster of the B. bassiana genome dispersed across a total length of approximately 50kb. The beauvericin biosynthetic gene cluster contains beauvericin synthetase as well as kivr gene encoding NADPH-dependent ketoisovalerate reductase which is necessary to convert 2-ketoisovalarate to D-Hiv and a gene encoding a putative Gal4-like transcriptional regulator. Our syntenic comparison showed that species in Cordycipitaceae have almost conserved beauvericin biosynthetic gene cluster although the gene order and direction were sometimes variable. It is intriguing that there is no region orthologous to beauvericin synthetase gene in Cordyceps militaris genome. It is likely that beauvericin synthetase was present in common ancestor of Cordycipitaceae but selective gene loss has occurred in several species including C. militaris. Putative bassianolide biosynthetic gene cluster consisted of 16 genes including bassianolide synthetase, cytochrome P450 monooxygenase, and putative Gal4-like transcriptional regulator genes. Our synteny analysis found that only B. bassiana possessed a bassianolide synthetase gene among the studied fungi. This result is consistent with the groupings in A-domain tree in which bassianolide synthetase gene found in B. bassiana was not grouped with NRPS genes predicted in other species. We hypothesized that bassianolide biosynthesizing cluster genes in B. bassiana are possibly acquired by horizontal gene transfer (HGT) from distantly related fungi. The present study showed that B. bassiana is the only species capable of producing both beauvericin and bassianolide. This property led to B. bassiana infect multiple hosts and to be a potential biological control agent against agricultural pests.

  • PDF

Heterologous Expression of Daptomycin Biosynthetic Gene Cluster Via Streptomyces Artificial Chromosome Vector System

  • Choi, Seunghee;Nah, Hee-Ju;Choi, Sisun;Kim, Eung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.12
    • /
    • pp.1931-1937
    • /
    • 2019
  • The heterologous expression of the Streptomyces natural product (NP) biosynthetic gene cluster (BGC) has become an attractive strategy for the activation, titer improvement, and refactoring of valuable and cryptic NP BGCs. Previously, a Streptomyces artificial chromosomal vector system, pSBAC, was applied successfully to the precise cloning of large-sized polyketide BGCs, including immunosuppressant tautomycetin and antibiotic pikromycin, which led to stable and comparable production in several heterologous hosts. To further validate the pSBAC system as a generally applicable heterologous expression system, the daptomycin BGC of S. roseosporus was cloned and expressed heterologously in a model Streptomyces cell factory. A 65-kb daptomycin BGC, which belongs to a non-ribosomal polypeptide synthetase (NRPS) family, was cloned precisely into the pSBAC which resulted in 28.9 mg/l of daptomycin and its derivatives in S. coelicolor M511(a daptomycin non-producing heterologous host). These results suggest that a pSBAC-driven heterologous expression strategy is an ideal approach for producing low and inconsistent Streptomyces NRPS-family NPs, such as daptomycin, which are produced low and inconsistent in native host.

The Ribostamycin Biosynthetic Gene Cluster in Streptomyces ribosidificus: Comparison with Butirosin Biosynthesis

  • Subba, Bimala;Kharel, Madan Kumar;Lee, Hei Chan;Liou, Kwangkyoung;Kim, Byung-Gee;Sohng, Jae Kyung
    • Molecules and Cells
    • /
    • v.20 no.1
    • /
    • pp.90-96
    • /
    • 2005
  • A cluster of genes for ribostamycin (Rbm) biosynthesis was isolated from Streptomyces ribosidificus ATCC 21294. Sequencing of 31.892 kb of the genomic DNA of S. ribosidificus revealed 26 open reading frames (ORFs) encoding putative Rbm biosynthetic genes as well as resistance and other genes. One of ten putative Rbm biosynthetic genes, rbmA, was expressed in S. lividans TK24, and shown to encode 2-deoxy-scyllo-inosose (DOI) synthase. Acetylation of various aminoglycoside-aminocyclitol (AmAcs) by RbmI confirmed it to be an aminoglycoside 3-N-acetyltransferase. Comparison of the genetic control of ribostamycin and butirosin biosynthesis pointed to a common biosynthetic route for these compounds, despite the considerable differences between them in genetic organization.