Browse > Article
http://dx.doi.org/10.4014/jmb.1802.02045

Genetic and Functional Analyses of the DKxanthene Biosynthetic Gene Cluster from Myxococcus stipitatus DSM 14675  

Hyun, Hyesook (Department of Biotechnology, Hoseo University)
Lee, Sunjin (Department of Biotechnology, Hoseo University)
Lee, Jong Suk (Biocenter, Gyeonggido Business and Science Accelerator (GBSA))
Cho, Kyungyun (Department of Biotechnology, Hoseo University)
Publication Information
Journal of Microbiology and Biotechnology / v.28, no.7, 2018 , pp. 1068-1077 More about this Journal
Abstract
DKxanthenes are a class of yellow secondary metabolites produced by myxobacterial genera Myxococcus and Stigmatella. We identified a putative 49.5 kb DKxanthene biosynthetic gene cluster from Myxococcus stipitatus DSM 14675 by genomic sequence and mutational analyses. The cluster consisted of 15 genes (MYSTI_06004-MYSTI_06018) encoding polyketide synthases, non-ribosomal peptide synthases, and proteins with unknown functions. Disruption of the genes by plasmid insertion resulted in defects in the production of yellow pigments. High-performance liquid chromatography and liquid chromatography-tandem mass spectrometry analyses indicated that the yellow pigments produced by M. stipitatus DSM 14675 might be novel DKxanthene derivatives. M. stipitatus did not require DKxanthenes for the formation of heat-resistant viable spores, unlike Myxococcus xanthus. Furthermore, DKxanthenes showed growth inhibitory activity against the fungi Aspergillus niger, Candida albicans, and Rhizopus stolonifer.
Keywords
Myxobacteria; Myxococcus stipitatus; secondary metabolite; DKxanthene; biosynthetic gene;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Burchard RP, Burchard AC, Parish JH. 1977. Pigmentation phenotype instability in Myxococcus xanthus. Can. J. Microbiol. 23: 1657-1662.   DOI
2 Hyun H, Park S, Cho K. 2016. Analysis of the melithiazol biosynthetic gene cluster in Myxococcus stipitatus DSM 14675. Microbiol. Biotechnol. Lett. 44: 391-399.   DOI
3 Berdy J. 2012. Thoughts and facts about antibiotics: where we a re now and where we are heading . J. Antibiot. (Tokyo) 65: 385-395.   DOI
4 Schaberle TF, Lohr F, Schmitz A, Konig GM. 2014. Antibiotics from myxobacteria. Nat. Prod. Rep. 31: 953-972.   DOI
5 Keane R, Berleman J. 2016. The predatory life cycle of Myxococcus xanthus. Microbiology 162: 1-11   DOI
6 Dey A, Vassallo CN, Conklin AC, Pathak DT, Troselj V, Wall D. 2016. Sibling rivalry in Myxococcus xanthus is mediated by kin recognition and a polyploid prophage. J. Bacteriol. 198: 994-1004.   DOI
7 Laue BE, Gill RE. 1995. Using a phase-locked mutant of Myxococcus xanthus to study the role of phase variation in development. J. Bacteriol. 177: 4089-4096.   DOI
8 Wenzel SC, Muller R. 2009. The impact of genomics on the exploitation of the myxobacterial secondary metabolome. Nat. Prod. Rep. 26: 1385-1407.   DOI
9 Sasse F, Steinmetz H, Hofle G, Reichenbach H. 1993. Rhizopodin, a new compound from Myxococcus stipitatus (myxobacteria) causes formation of rhizopodia-like structures in animal cell cultures. Production, isolation, physico-chemical and biological properties. J. Antibiot. (Tokyo) 46: 741-748.   DOI
10 Sasse F, Bohlendorf B, Herrmann M, Kunze B, Forche E, Steinmetz H, et al. 1999. Melithiazols, new betamethoxyacrylate inhibitors of the respiratory chain isolated from myxobacteria. Production, isolation, physico-chemical and biological properties. J. Antibiot. (Tokyo) 52: 721-729.   DOI
11 Trowitzsch-Kienast W, Forche E, Wray V, Reichenbach H, Jurkiewicz E, Hunsmann G, Hofle G. 1992. Antibiotika aus gleitenden bakterien, 45. phenalamide, neue HIV-1-inhibitoren aus Myxococcus stipitatus Mx s40. Liebigs Ann. Chem. 1992: 659-779.   DOI
12 Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, et al. 2011. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters. Nucleic Acids Res. 39: W339-W346.   DOI
13 Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, et al. 2015. antiSMASH 3.0 - a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 43: W237-W243.   DOI
14 Johnson M, Zaretskaya I, Raytselis Y, Mereshuk Y, McGinnis S, Madden TL. 2008. NCBI BLAST: a better web interface. Nucleic Acids Res. 36: W5-W9.   DOI
15 Shin H, Youn J, An D, Cho K. 2013. Production of antimicrobial substances by strains of myxobacteria Corallococcus and Myxococcus. Korean J. Microbiol. Biotechnol. 41: 44-51.   DOI
16 Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, et al. 2015. CDD: NCBI's conserved domain database. Nucleic Acids Res. 43: D222-D226.   DOI
17 Cho K, Zusman DR. 1999. Sporulation timing in Myxococcus xanthus is controlled by the espAB locus. Mol. Microbiol. 34: 714-725.   DOI
18 Shi W, Kohler T, Zusman DR. 1994. Motility and chemotaxis in Myxococcus xanthus. Methods Mol. Genet. 3: 258-269.
19 Huntley S, Kneip S, Treuner-Lange A, Sogaard-Andersen L. 2013. Complete genome sequence of Myxococcus stipitatus strain DSM 14675, a fruiting myxobacterium. Genome Announc. 1: e0010013.   DOI
20 Park S, Hyun H, Lee JS, Cho K. 2016. Identification of the phenalamide biosynthetic gene cluster in Myxococcus stipitatus DSM 14675. J. Microbiol. Biotechnol. 26: 1636-1642   DOI
21 Reichenbach H. 2005. Myxococcales, pp. 1059-1144. In Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds.), Bergey's Manual of Systematic Bacteriology, 2nd Ed. Bergey's Manual Trust, East Lansing, MI, USA.
22 Shimkets LJ, Dworkin M, Reichenbach H. 2006. The myxobacteria, pp. 31-115. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds.), The Prokaryotes, Vol. 7. Springer, New York, NY, USA.
23 Weissman KJ, Muller R. 2010. Myxobacterial secondary metabolites: bioactivities and modes-of-action. Nat. Prod. Rep. 27: 1276-1295.   DOI
24 Meiser P, Weissman KJ, Bode HB, Krug D, Dickschat JS, Sandmann A, et al. 2008. DKxanthene biosynthesis - understanding the basis for diversity-oriented synthesis in myxobacterial secondary metabolism. Chem. Biol. 15: 771-781.   DOI
25 Herrmann J, Fayad AA, Muller R. 2017. Natural products from myxobacteria: novel metabolites and bioactivities. Nat. Prod. Rep. 34: 135-160.   DOI
26 Meiser P, Bode HB, Muller R. 2006. The unique DKxanthene secondary metabolite family from the myxobacterium Myxococcus xanthus is required for developmental sporulation. Proc. Natl. Acad. Sci. USA 103: 19128-19133.   DOI
27 Zimbro MJ, Power DA, Miller SM, Wilson GE, Johnson JA (eds.). 2009. Difco and BBL Manual: Manual of Microbiological Culture Media, 2nd Ed. Becton Dickinson and Co., Sparks, MD, USA.
28 Furusawa G, Dziewanowska K, Stone H, Settles M, Hartzell P. 2011. Global analysis of phase variation in Myxococcus xanthus. Mol. Microbiol. 81: 784-804.   DOI