• 제목/요약/키워드: Biosensors

검색결과 296건 처리시간 0.028초

담배 잎-peroxidase와 다중벽 탄소 나노튜브를 이용한 dopamine의 정량 (Dopamine determination using a biosensor based on multiwall carbon nanotubes paste and burley tobacco-peroxidase)

  • 권효식;전병숙;박용남
    • 분석과학
    • /
    • 제28권2호
    • /
    • pp.98-105
    • /
    • 2015
  • 버얼리종 담배에서 추출물에서 얻은 peroxidase와 다중벽 탄소 나노튜브를 이용한 dopamine 정량 바이오센서를 만들었다. Peroxidase는 dopamine을 dopamine quinone으로 산화시키는 반응의 촉매 역할을 한다. 이 논문은 효소의 농도, pH와 같은 바이오센서의 감응에 영향을 주는 parameter를 조사하였다. 또한, 전극의 감도, 직선성의 범위, 전극의 안정성을 조사하였다. 본 실험에 사용한 dopamine의 정량 센서는 pH 6.50, 0.010 M 인산 완충용액, -0.15 V의 가해준 전압에서 가장 좋은 감응을 나타내었다. 전극의 검출한계(S/N =3)는 2.7×10−6 M이었으며, 5.0×10−2 M dopamine을 이용하여 10회 반복 측정한 상대표준편차는 1.3%이었다.

센서 네트워크와 3G 통신 기반 스마트 생장환경 관리시스템 개발 (The Implementation of Smart Raising Environment Management System based on Sensor Network and 3G Telecommunication)

  • 정경진;김원중
    • 한국전자통신학회논문지
    • /
    • 제6권4호
    • /
    • pp.595-601
    • /
    • 2011
  • 본 논문에서는 u-IT기술을 농업에 적용하여 시설하우스 식물들에게 최적의 생장 환경을 자동으로 조절하는 시스템을 제안한다. 본 시스템은 온도, 습도 등의 환경 센서와 EC, PH 등의 생체 센서 그리고 자동제어장치들로 구성되어 있고, 이는 자동조절 소프트웨어로 제어된다. 농민은 이 시스템을 기반으로 시설하우스의 생장환경을 정밀하게 제어하여 생산비를 절감하고 고품질의 농산물을 생산하게 된다. 본 시스템은 각 시설하우스에 설치되는 클라이언트 시스템과 클라이언트의 데이터를 취합하는 서버시스템으로 구축이 되었고, 인터넷과 3G망을 통해 각 농가의 자료를 취합한다. 수집된 생장환경 데이터는 최적의 작물 생장환경을 찾아내기 위해 다양한 방법으로 분석되고, 시각화되어 농가 컨설팅 자료로 활용된다.

다결정 다이아몬드 필름의 신경종양세포(SH-SY5Y) 배양 특성 (Characteristic of neuroblastoma cell (SH-SY5Y) culture on the crystalline diamond film)

  • 남효근;오홍기;김대훈;김민혜;박혜빈;지광환;송광섭
    • 한국기계가공학회지
    • /
    • 제12권4호
    • /
    • pp.10-15
    • /
    • 2013
  • In order to fabricate high sensitive and stable biosensors, we require the material with superior biocompatibility and physical-chemical stability. Many kinds of biomaterials have been evaluated to apply for bioindustry. Recently, carbon based diamond thin films have been focal pointed as bio-applications and their possibility has been evaluated. Diamond thin film has many advantages for electrochemical and biological applications, such as wide potential window (3.0-3.5V), low background current and chemical-physical stability. In this work, we have cultured neuroblastoma cell (SH-SY5Y) on the crystalline diamond films. We use MTT assay to evaluate the characteristic of cell culture on the substrates. As a result, neuroblastoma cell was cultured on the crystalline diamond film as similar as cell culture dish.

중금속, 제초제 및 항생제 검출용 남세균 유래 바이오 리포터 (Cyanobacterial bioreporters for detection of heavy metals, herbicide, and antibiotics)

  • 김수연;정원중;서계홍;유장렬;박연일
    • Journal of Plant Biotechnology
    • /
    • 제35권2호
    • /
    • pp.141-145
    • /
    • 2008
  • 본 연구는 남세균 고유의 프로모터를 포함하는 유전자간 염기서열에 기반하여 환경위해성 검출용 바이오센서를 개발하고자 시도되었다. 포도당 처리에 의해서 유도되는 8종의 유전자 (atpI, ndbA, ctaD1, tkt, pgi, pdh, ppc, 그리고 rydA)의 프로모터 부위를 리포터 유전자의 일종인 발광유전자 (luxAB) 벡터 pILA (Genbank: AJ251840)에 도입시켜 재조합 벡터를 제조한 후 Synechocystis sp. PCC6803을 형질전환시킨 결과, pILA 벡터만을 포함하고 있는 대조구에 비해서 포도당 처리에 의해서 생물발광량이 5-25배 정도 현저히 증가함을 확인하였다. 또한 $Hg^{2+}$, $Cu^{2+}$, $Zn^{2+}$과 같은 중금속, $CN^-$, DCMU, DBMIB와 같은 제초제, 그리고 클로람페니콜이나 리팜피신과 같은 항생제에 의해서 생물발광이 현저히 억제되었다.

셀룰로오스 기반 Electro-Active Paper 작동기: 재료 및 응용 (Cellulose based Electro-Active Paper Actuator: Materials and Applications)

  • 장상동;양상열;고현우;김동구;문성철;강진호;정혜전;김재환
    • 한국정밀공학회지
    • /
    • 제28권11호
    • /
    • pp.1227-1233
    • /
    • 2011
  • Cellulose Electro-Active Paper (EAPap) has been known as a new smart material that is attractive for a bio-mimetic actuator due to its merits in terms of lightweight, dry condition, large displacement output, low actuation voltage and low power consumption. Cellulose EAPap is made by regenerating cellulose and aligning its micro-fibrils. This paper introduces several EAPap materials, which are based on natural cellulose and its hybrid nanocomposites mixed/blended with inorganic functional materials. By chemically bonding and mixing with carbon nanotubes and inorganic nanoparticles, the cellulose EAPap can be a hybrid nanocomposite that has versatile properties and can meet material requirements for many applications. Recent research trend of the cellulose EAPap is introduced in terms of material preparations as well as application devices including actuators, temperature and humidity sensors, biosensors, chemical sensors, and so on. This paper also explains wirelessly driving technology for the cellulose EAPap, which is attractive for bio-mimetic robotics, surveillance and micro-aerial vehicles.

원격구동 셀룰로오스 종이 작동기의 응용연구 (Wirelessly Driven Cellulose Electro-Active Paper Actuator: Application Research)

  • 김재환;양상렬;장상동;고현우;문성철;김동구;강진호
    • 대한기계학회논문집B
    • /
    • 제36권5호
    • /
    • pp.539-543
    • /
    • 2012
  • 셀룰로오스 EAPap 작동기는 생체 모방형 작동기의 하나로 생체적합하고 가볍고 비교적 낮은 전압에서도 큰 변위를 발생시킨다는 장점을 가지고 있다. 셀룰로오스를 재생하면서 셀룰로오스 파이버를 배열함으로써 압전 종이를 만들었다. 한편 셀룰로오스에 탄소나노튜브, 산화금속 나노분말, 전도성 고분자, 이온성 유체등을 물리적, 화학적으로 결합시켜 다양한 하이브리드 나노복합재를 만들었다. 본 논문에서는 셀룰로오스 EAPap 의 제조공정 및 이를 응용한 바이오센서, 화학센서, 유연트랜지스터, 그리고 작동기의 응용 디바이스에 대해 소개한다. 또한 셀룰로오스 EAPap 을 무선으로 구동하는 기술에 대해 소개한다. 이는 생체모방로봇, 정찰 등에 활용될 수 있다.

Hemoglobin-DNA/pyterpy 박막을 이용한 과산화수소의 전기화학적 검출 (Electrochemical Detection of Hydrogen Peroxide based on Hemoglobin-DNA/pyterpy Modified Gold Electrode)

  • 이동윤;최원석;박상현;권영수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1295-1296
    • /
    • 2008
  • Hydrogen peroxide ($H_2O_2$) biosensor is one of the most developing sensors because this kind of sensors is highly selective and responds quickly to the specific substrate. Hemoglobin (Hb) has been used as ideal biomolecules to construct hydrogen peroxide biosensors because of their high selectivity to $H_2O_2$. The direct electron transfer of Hb has widely investigated for application in the determination of $H_2O_2$ because of its simplicity, high selectivity and intrinsic sensitivity. An electrochemical detection for hydrogen peroxide was investigated based on immobilization of hemoglobin on DNA/Fe(pyterpy)$^{2+}$ modified gold electrode. The pyterpy monolayers were firstly an electron deposition onto the gold electrode surface of the quartz crystal microbalance (QCM). It is offered a template to attach negatively charged DNA. The fabrication process of the electrode was verified by quartz crystal analyzer (QCA). The experimental parameters such as pH, applied potential and amperometric response were evaluated and optimized. Under the optimized conditions, this sensor shows the linear response within the range between $3.0{\times}10^{-6}$ to $9.0{|times}10^{-4}$ M concentrations of $H_2O_2$. The detection limit was determined to be $9{\times}10^{-7}$ M (based on the S/N=3).

  • PDF

Gallic Acid Enhancement of Gold Nanoparticle Anticancer Activity in Cervical Cancer Cells

  • Daduang, Jureerut;Palasap, Adisak;Daduang, Sakda;Boonsiri, Patcharee;Suwannalert, Prasit;Limpaiboon, Temduang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권1호
    • /
    • pp.169-174
    • /
    • 2015
  • Cervical cancer (CxCa) is the most common cancer in women and a prominent cause of cancer mortality worldwide. The primary cause of CxCa is human papillomavirus (HPV). Radiation therapy and chemotherapy have been used as standard treatments, but they have undesirable side effects for patients. It was reported that gallic acid has antioxidant, antimicrobial, and anticancer activities. Gold nanoparticles are currently being used in medicine as biosensors and drug delivery agents. This study aimed to develop a drug delivery agent using gold nanoparticles conjugated with gallic acid. The study was performed in uninfected (C33A) cervical cancer cells, cervical cancer cells infected with HPV type 16 (CaSki) or 18 (HeLa), and normal Vero kidney cells. The results showed that GA inhibited the proliferation of cancer cells by inducing apoptosis. To enhance the efficacy of this anticancer activity, 15-nm spherical gold nanoparticles (GNPs) were used to deliver GA to cancer cells. The GNPs-GA complex had a reduced ability compared to unmodified GA to inhibit the growth of CxCa cells. It was interesting that high-concentration ($150{\mu}M$) GNPs-GA was not toxic to normal cells, whereas GA alone was cytotoxic. In conclusion, GNPs-GA could inhibit CxCa cell proliferation less efficiently than GA, but it was not cytotoxic to normal cells. Thus, gold nanoparticles have the potential to be used as phytochemical delivery agents for alternative cancer treatment to reduce the side effects of radiotherapy and chemotherapy.

Enhanced pH Response of Solution-gated Graphene FET by Using Vertically Grown ZnO Nanorods on Graphene Channel

  • Kim, B.Y;Jang, M.;Shin, K.-S.;Sohn, I.Y;Kim, S.-W.;Lee, N.-E
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.434.2-434.2
    • /
    • 2014
  • We observe enhanced pH response of solution-gated field-effect transistors (SG-FET) having 1D-2D hybrid channel of vertical grown ZnO nanorods grown on CVD graphene (Gr). In recent years, SG-FET based on Gr has received a lot of attention for biochemical sensing applications, because Gr has outstanding properties such as high sensitivity, low detection limit, label-free electrical detection, and so on. However, low-defect CVD Gr has hardly pH responsive due to lack of hydroxyl group on Gr surface. On the other hand, ZnO, consists of stable wurtzite structure, has attracted much interest due to its unique properties and wide range of applications in optoelectronics, biosensors, medical sciences, etc. Especially, ZnO were easily grown as vertical nanorods by hydrothermal method and ZnO nanostructures have higher sensitivity to environments than planar structures due to plentiful hydroxyl group on their surface. We prepared for ZnO nanorods vertically grown on CVD Gr (ZnO nanorods/Gr hybrid channel) and to fabricate SG-FET subsequently. We have analyzed hybrid channel FETs showing transfer characteristics similar to that of pristine Gr FETs and charge neutrality point (CNP) shifts along proton concentration in solution, which can determine pH level of solution. Hybrid channel SG-FET sensors led to increase in pH sensitivity up to 500%, compared to pristine Gr SG-FET sensors. We confirmed plentiful hydroxyl groups on ZnO nanorod surface interact with protons in solution, which causes shifts of CNP. The morphology and electrical characteristics of hybrid channel SG-FET were characterized by FE-SEM and semiconductor parameter analyzer, respectively. Sensitivity and sensing mechanism of ZnO nanorods/Gr hybrid channel FET will be discussed in detail.

  • PDF

Localized Surface Plasmon Resonance (LSPR) Biosensors on Metal Nanoparticles with the Design of Bioreceptors

  • Kim, Min-Gon;Park, Jin-Ho;Byun, Ju-Young;Shin, Yong-Beom
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.126-126
    • /
    • 2014
  • Label-free biomolecular assay based localized surface plasmon resonance (LSPR) of noble metal nanoparticles enables simple and rapid detection with the use of simple equipment. Nanosized metal nanoparticles exhibit a strong absorption band when the incident light frequency is resonant with the collective oscillation of the electrons, which is known as the LSPR. Here we demonstrate localized surface plasmon resonance (LSPR) substrates such as plasmonic Au nanodisks fabricated by a nanoimprinting process and gold nanorod-immobilized surfaces and their applications to highly sensitive and/or label-free biosensing. To increase detection sensitivity various bioreceptors weree designed. A single chain variable fragment (scFv) was used as a receptor to bind C-reactive protein (CRP). The results of this effort showed that CRP in human serum could be quantitatively detected lower than 1 ng/ml. Aptamers, which were immobilized on gold nanorods, were used to detect mycotoxins. The specific binding of ochratoxin A (OTA) to the aptamer was monitored by the longitudinal wavelength shift of LSPR peak in the UV-Vis spectra resulting from the changes of local refractive index near the GNR surface induced by accumulation of OTA and G-quadruplex structure formation of the aptamer. According to our results, OTA could be quantitatively detected lower than 1 nM level. Additionally, aptamer-functionalized GNR substrate was quite robust and can be regenerated many times by rinsing at 70 OC to remove bound target. During seven times of washing steps, the developed OTA sensing system could be reusable. Moreover, the proposed biosensor exhibited selectivity over other mycotoxins with an excellent recovery for detection in grinded corn samples, suggesting that the proposed LSPR based aptasensor plays an important role in label-free detection of mycotoxins.

  • PDF