DOI QR코드

DOI QR Code

Wirelessly Driven Cellulose Electro-Active Paper Actuator: Application Research

원격구동 셀룰로오스 종이 작동기의 응용연구

  • 김재환 (인하대학교 기계공학과) ;
  • 양상렬 (인하대학교 기계공학과) ;
  • 장상동 (인하대학교 기계공학과) ;
  • 고현우 (인하대학교 기계공학과) ;
  • 문성철 (인하대학교 기계공학과) ;
  • 김동구 (인하대학교 기계공학과) ;
  • 강진호 (인하대학교 기계공학과)
  • Received : 2012.01.03
  • Accepted : 2012.02.20
  • Published : 2012.05.01

Abstract

Cellulose Electro-Active Paper (EAPap) is attractive as a biomimetic actuator because of its merits: it is lightweight, operates in dry conditions, has a large displacement output, has a low actuation voltage, and has low power consumption. Cellulose is regenerated so as to align its microfibrils, which results in a piezoelectric paper. When chemically bonded and mixed with carbon nanotubes, titanium oxide, zinc oxide, tin oxides, the cellulose EAPap can be used as a hybrid nanocomposite that has versatile properties and that can meet the requirements of many application devices. This paper presents trends in recent research on the cellulose EAPap, mainly on material preparation and its use in devices, including biosensors, chemical sensors, flexible transistors, and actuators. This paper also explains wirelessly driving technology for the cellulose EAPap, which is attractive for use in biomimetic robotics and micro-aerial vehicles.

셀룰로오스 EAPap 작동기는 생체 모방형 작동기의 하나로 생체적합하고 가볍고 비교적 낮은 전압에서도 큰 변위를 발생시킨다는 장점을 가지고 있다. 셀룰로오스를 재생하면서 셀룰로오스 파이버를 배열함으로써 압전 종이를 만들었다. 한편 셀룰로오스에 탄소나노튜브, 산화금속 나노분말, 전도성 고분자, 이온성 유체등을 물리적, 화학적으로 결합시켜 다양한 하이브리드 나노복합재를 만들었다. 본 논문에서는 셀룰로오스 EAPap 의 제조공정 및 이를 응용한 바이오센서, 화학센서, 유연트랜지스터, 그리고 작동기의 응용 디바이스에 대해 소개한다. 또한 셀룰로오스 EAPap 을 무선으로 구동하는 기술에 대해 소개한다. 이는 생체모방로봇, 정찰 등에 활용될 수 있다.

Keywords

References

  1. Bar-Cohen, Y., Ed., 2001, Electroactive polymer(EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges, SPIE Press, Bellingham, USA.
  2. Shahinpoor, M., Bar-Cohen, Y., Simpson, J.O. and Smith, J., 1998, "Ionic Polymer-Metal Composites (IPMCs) as Biomimetic Sensors, Actuators and Artificial Muscles—a Review," Smart Mater. & Struct., Vol.7, No.6, R15-R30. https://doi.org/10.1088/0964-1726/7/6/001
  3. Pelrine, R., Kornbluh, R. and Joseph, J., 1998, "Electrostriction of Polymer Dielectrics with Compliant Electrodes as a Means of Actuation," Sens. & Act. A: Physical, Vol.64, pp. 77-85. https://doi.org/10.1016/S0924-4247(97)01657-9
  4. Kim, J., Yun, S. and Ounaies, Z., 2006, "Discovery of Cellulose as a Smart Material," Macromolecules, Vol.39, No.16, pp. 4202-4206 https://doi.org/10.1021/ma060261e
  5. Kim, J., Song, C. and Yun, S., 2006, "Cellulose based Electro-Active Papers: Performance and Environmental Effects," Smart Mater. & Struct., Vol.15, pp.719-723. https://doi.org/10.1088/0964-1726/15/3/007
  6. Mahadeva, S. K., Yun, K.-J., Kim, J.-H. and Kim, J., 2011, "Highly Durable, Biomimetic Electro-Active Paper Actuator Based on Cellulose Polypyrrole-Ionic Liquid(CPIL) Nanocomposite," J Nanosci & Nanotech. Vol.11, No.1, pp.270-274. https://doi.org/10.1166/jnn.2011.3192
  7. Yun, S. and Kim, J., 2010, "Multiwalled Carbon Nanotubes-Cellulose Paper for a Chemical Vapor Sensor," Sens. & Act. B: Chemical, Vol.150, pp.308-313. https://doi.org/10.1016/j.snb.2010.06.068
  8. Yun, S., Kim, J. and Lee, K.-S., 2010, "Evaluation of Cellulose Electro-Active Paper made by Tape Casting and Zone Stretching Methods," Int. J. Prec. Eng. Manuf. Vol. 11, No.6, pp.987-990. https://doi.org/10.1007/s12541-010-0120-2
  9. Mahadeva, S. K., and Kim, J., 2011, "Conductometric Glucose Biosensor made with Cellulolse and Tin Oxide Hybrid Nanocomposite," Sens. & Act. B: Chemical, Vol.157, No.1, 177-182. https://doi.org/10.1016/j.snb.2011.03.046
  10. Mahadeva, S. K., Nayak, J. and Kim, J., 2011, "Biosensor made with Organic-Inorganic Hybrid Composite: Cellulose-Tin oxide," Proc. of 18th SPIE Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, Vol.7980, 79800C.