DOI QR코드

DOI QR Code

Cyanobacterial bioreporters for detection of heavy metals, herbicide, and antibiotics

중금속, 제초제 및 항생제 검출용 남세균 유래 바이오 리포터

  • 김수연 (충남대학교 생물학과) ;
  • 정원중 (한국생명공학연구원 식물유전체연구센터) ;
  • 서계홍 (대구대학교 생물학과) ;
  • 유장렬 (한국생명공학연구원 식물유전체연구센터) ;
  • 박연일 (충남대학교 생물학과)
  • Published : 2008.06.30

Abstract

In this study, glucose-inducible intergenic sequences were used to generate bioreporters of the cyanobacterium Synechocystis sp. PCC 6803 that could monitor environmental pollutants. Luciferase genes LuxAB from the marine bacterium Vibrio fischeri under the control of glucose-inducible intergenic seqeucens of eight genes (atpI, ndbA, ctaD1, tkt, pgi, pdh, ppc, and cydA) were successfully expressed in the cyano-bacterial transformants, showing 5-25 fold increases in biolumeniscence upon exposure to glucose. In addition, glucose-inducible cyanobacterial bioreporters were very sensitive to various chemicals such as heavy metals ($Hg^{2+}$, $Cu^{2+}$, $Zn^{2+}$), electron transport inhibitors (DCMU, DBMIB, $CN^-$), and antibiotics (chloramphenicol and rifampicin). These glucose-inducible cyanobacterial bioreporters would be useful to develop biosensors for rapid screening of environmental samples.

본 연구는 남세균 고유의 프로모터를 포함하는 유전자간 염기서열에 기반하여 환경위해성 검출용 바이오센서를 개발하고자 시도되었다. 포도당 처리에 의해서 유도되는 8종의 유전자 (atpI, ndbA, ctaD1, tkt, pgi, pdh, ppc, 그리고 rydA)의 프로모터 부위를 리포터 유전자의 일종인 발광유전자 (luxAB) 벡터 pILA (Genbank: AJ251840)에 도입시켜 재조합 벡터를 제조한 후 Synechocystis sp. PCC6803을 형질전환시킨 결과, pILA 벡터만을 포함하고 있는 대조구에 비해서 포도당 처리에 의해서 생물발광량이 5-25배 정도 현저히 증가함을 확인하였다. 또한 $Hg^{2+}$, $Cu^{2+}$, $Zn^{2+}$과 같은 중금속, $CN^-$, DCMU, DBMIB와 같은 제초제, 그리고 클로람페니콜이나 리팜피신과 같은 항생제에 의해서 생물발광이 현저히 억제되었다.

Keywords

References

  1. Belkin S (2003) Microbial whole-cell sensing systems of environmental pollutants. Curr Opin Microbiol 6: 206-212 https://doi.org/10.1016/S1369-5274(03)00059-6
  2. Choi SH, Gu MB (2002) A portable toxicity biosensors using freeze-dried recombinant bioluminescent bacteria. Biosens Biolelectron 17: 434-440
  3. Kim BC, Gu MB (2003) A bioluminescent sensor for high throughput toxicity classification. Biosens Bioelectron 18: 1015-1021 https://doi.org/10.1016/S0956-5663(02)00220-8
  4. Lee JH, Mitchell RJ, Kim BC, Cullen DC, Gu MB (2005) A cell array biosensor for environmental toxicity analysis. Biosens Bioelectron 21: 500-507 https://doi.org/10.1016/j.bios.2004.12.015
  5. Lee JM, Ryu JY, Kim HH, Choi SB, Tandeau de Marsac N, Park Y-I (2005) Identification of a glucokinase that generates a major glucose phosphorylation activity in the cyanobacterium Synechocystis sp. PCC 6803. Mol Cells 19: 256-261
  6. Lee SH, Ryu JY, Kim SY, Jeon JH, Song JY, Cho HT, Choi SB, Choi D, N Tandeau de Marsac, and Park Y-I (2007) Transcriptional regulation of the respiratory genes in the cyanobacterium Synechocystis sp. PCC 6803 during the early response to glucose feeding. Plant Physiol 145 (3): 1018-1030 https://doi.org/10.1104/pp.107.105023
  7. Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, Liu YX, Jones TL, Sheen J (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light and hormonal signaling. Science, 300: 332-336 https://doi.org/10.1126/science.1080585
  8. Shao CY, Howe CJ, Porter AJR, Glover LA (2002) Novel cyanobacterial biosensor for detection of herbicides. Appl Environ Microbiol 68: 5026-5033 https://doi.org/10.1128/AEM.68.10.5026-5033.2002
  9. Ryu JY, Song JY, Lee JM, Jeong SW, Chow WS, Choi SB, Pogson BJ, Park Y-I (2004) Glucose-induced expression of carotenoid biosynthesis genes in the dark is mediated by cytosolic pH in the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 279: 25320-25325 https://doi.org/10.1074/jbc.M402541200
  10. Verma N, Singh M (2005) Biosensors for heavy metals. BioMaterials 18: 121-129