• Title/Summary/Keyword: Bioreactors

Search Result 193, Processing Time 0.022 seconds

Optimization of Tannase Production by Aspergillus niger in Solid-State Packed-Bed Bioreactor

  • Rodriguez-Duran, Luis V.;Contreras-Esquivel, Juan C.;Rodriguez, Raul;Prado-Barragan, L. Arely;Aguilar, Cristobal N.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.9
    • /
    • pp.960-967
    • /
    • 2011
  • Tannin acyl hydrolase, also known as tannase, is an enzyme with important applications in the food, feed, pharmaceutical, and chemical industries. However, despite a growing interest in the catalytic properties of tannase, its practical use is very limited owing to high production costs. Several studies have already demonstrated the advantages of solid-state fermentation (SSF) for the production of fungal tannase, yet the optimal conditions for enzyme production strongly depend on the microbial strain utilized. Therefore, the aim of this study was to improve the tannase production by a locally isolated A. niger strain in an SSF system. The SSF was carried out in packed-bed bioreactors using polyurethane foam as an inert support impregnated with defined culture media. The process parameters influencing the enzyme production were identified using a Plackett-Burman design, where the substrate concentration, initial pH, and incubation temperature were determined as the most significant. These parameters were then further optimized using a Box-Behnken design. The maximum tannase production was obtained with a high tannic acid concentration (50 g/l), relatively low incubation temperature ($30^{\circ}C$), and unique low initial pH (4.0). The statistical strategy aided in increasing the enzyme activity nearly 1.97-fold, from 4,030 to 7,955 U/l. Consequently, these findings can lead to the development of a fermentation system that is able to produce large amounts of tannase in economical, compact, and scalable reactors.

Quorum Quenching Bacteria Isolated from the Sludge of a Wastewater Treatment Plant and Their Application for Controlling Biofilm Formation

  • Kim, A-Leum;Park, Son-Young;Lee, Chi-Ho;Lee, Chung-Hak;Lee, Jung-Kee
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.11
    • /
    • pp.1574-1582
    • /
    • 2014
  • Bacteria recognize changes in their population density by sensing the concentration of signal molecules, N-acyl-homoserine lactones (AHLs). AHL-mediated quorum sensing (QS) plays a key role in biofilm formation, so the interference of QS, referred to as quorum quenching (QQ), has received a great deal of attention. A QQ strategy can be applied to membrane bioreactors (MBRs) for advanced wastewater treatment to control biofouling. To isolate QQ bacteria that can inhibit biofilm formation, we isolated diverse AHL-degrading bacteria from a laboratory-scale MBR and sludge from real wastewater treatment plants. A total of 225 AHL-degrading bacteria were isolated from the sludge sample by enrichment culture. Afipia sp., Acinetobacter sp. and Streptococcus sp. strains produced the intracellular QQ enzyme, whereas Pseudomonas sp., Micrococcus sp. and Staphylococcus sp. produced the extracellular QQ enzyme. In case of Microbacterium sp. and Rhodococcus sp., AHL-degrading activities were detected in the whole-cell assay and Rhodococcus sp. showed AHL-degrading activity in cell-free lysate as well. There has been no report for AHL-degrading capability in the case of Streptococcus sp. and Afipia sp. strains. Finally, inhibition of biofilm formation by isolated QQ bacteria or enzymes was observed on glass slides and 96-well microtiter plates using crystal violet staining. QQ strains or enzymes not only inhibited initial biofilm development but also reduced established biofilms.

Improved Production of Medium-Chain-Length Polyhydroxyalkanoates in Glucose-Based Fed-Batch Cultivations of Metabolically Engineered Pseudomonas putida Strains

  • Poblete-Castro, Ignacio;Rodriguez, Andre Luis;Lam, Carolyn Ming Chi;Kessler, Wolfgang
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.1
    • /
    • pp.59-69
    • /
    • 2014
  • One of the major challenges in metabolic engineering for enhanced synthesis of value-added chemicals is to design and develop new strains that can be translated into well-controlled fermentation processes using bioreactors. The aim of this study was to assess the influence of various fed-batch strategies in the performance of metabolically engineered Pseudomonas putida strains, ${\Delta}gcd$ and ${\Delta}gcd-pgl$, for improving production of medium-chain-length polyhydroxyalkanoates (mcl-PHAs) using glucose as the only carbon source. First we developed a fed-batch process that comprised an initial phase of biomass accumulation based on an exponential feeding carbon-limited strategy. For the mcl-PHA accumulation stage, three induction techniques were tested under nitrogen limitation. The substrate-pulse feeding was more efficient than the constant-feeding approach to promote the accumulation of the desirable product. Nonetheless, the most efficient approach for maximum PHA synthesis was the application of a dissolved-oxygen-stat feeding strategy (DO-stat), where P. putida ${\Delta}gcd$ mutant strain showed a final PHA content and specific PHA productivity of 67% and $0.83g{\cdot}l^{-1}{\cdot}h^{-1}$, respectively. To our knowledge, this mcl-PHA titer is the highest value that has been ever reported using glucose as the sole carbon and energy source. Our results also highlighted the effect of different fed-batch strategies upon the extent of realization of the intended metabolic modification of the mutant strains.

Chloroplast Genetic Transformation in Higher Plants: An Encounter Between Prokaryote and Eukaryote (고등식물의 엽록체 형질전환: 원핵생물과 진맥생물의 조우)

  • Chung, Hwa-Jee;Suh, Young-Bae;Jeong, Won-Joong;Min, Sung-Ran;Liu, Jang-R.
    • Journal of Plant Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.185-194
    • /
    • 2006
  • Chloroplasts are believed to be descended from certain cyanobacteria, which were taken up by phagocytosis into a host cell and lived there in a symbiotic relationship. In contrast to the current static concept on the chloroplast genome, its dynamism has been recently demonstrated: the chloroplast genome is active in intramolecular homolgous recombination, producing subgenomic circles when it obtains homolgous sequences via genetic transformation. Chloroplast tranformation in higher plants provides many advantages over nuclear transformation that include higher expression levels of transgenes, polycistronic expression of transgenes, and maternal transmission of transgenes. Tobacco has been used as a model for chloroplast genetic transformation. However, it is recently possible to transform the chloroplasts of other major food and economic crops including rice, soybean, and cotton. Chloroplast-transformed crops will be able to replace bioreactors using microorganisms for production of value-added proteins in future.

Conifer Somatic Embryogenesis : New Knowledge in Plant Biology and Breakthrough in Tree Biotechnology (침엽수(針葉樹) 체세포(體細胞) 배발생(胚發生)을 이용(利用)한 임목생물공학(林木生物工學))

  • Bozhkov, P.V.;Park, Y.G.
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.4
    • /
    • pp.667-679
    • /
    • 1996
  • Clonal forestry and reforestation programmes are especially interested now in development and application of controllable biotechnological systems based on the production of conifer somatic embryos in bioreactors with their following drilling and/or storage in the form of "artificial seeds". Modern achievements in conifer somatic embryogenesis has guided the development not only of biotechnological systems in forestry, but also of basic research in conifer embryology, cell and molecular biology. At the present time, the level of development of applied research on conifer somatic embryogenesis is well ahead our understanding of this complex phenomenon. The "bottleneck" situation in relation between basic and applied sciences will eventually lead to the appearance of "weak points" in biotechnological systems. In the present review, the major advances and the most pressing problems in the application of conifer somatic embryogenesis both to forest biotechnology and to basic research are in the focus of attention.

  • PDF

Experimental Evaluation Method of Mass Transfer Coefficient on Biotrickling Filtration for Air Pollution Control (대기오염제어를 위한 생물살수여과법에서 물질전달계수 실험평가방법에 관한 연구)

  • Won, Yang-Soo;Jo, Wan-Keun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.482-488
    • /
    • 2015
  • Biological treatment is promising alternative to conventional air pollution control method. Bioreactors for air pollution control have found most of their success in the treatment of dilute and high flow waste air streams containing volatile organic compounds and odor. The studies of mass transfer in biotrickling filters for air pollution control were of importance in order to control and optimize the purification process. The objectives of this study were to develop the experimental methodologies to evaluate the mass transfer coefficients of gas/liquid(trickling liquid), gas/solid(biomass) and liquid/solid in three phase biotrickling filtration. Also, this study characterized the influence factors on mass transfer such as dynamic holdup volume, gas/liquid flow rate ratio, biomass weight in reactor and recirculation rate of trickling medium for each phase of biotrickling filter.

Cultural Characteristics and Scale-up for Submerged Cultivation of Hericium erinaceum Through Air-lift and Jar Fermenter System (Air-lift 및 Jar Fermenter에 의한 Hericium erinaceum 심부배양의 배양특성 및 Scale-up)

  • Jung, Jae-Hyun;Lee, Keun-Eok;Lee, Shin-Young
    • KSBB Journal
    • /
    • v.21 no.2
    • /
    • pp.103-109
    • /
    • 2006
  • For the study of Hericium erinaceum as a useful functional foods and materials, liquid cultivation under two different bioreactors(air-lift fermenter and jar fermenter) which was not studied systematically until now, was conducted as a method of mass cultivation for H. erinaceum. A batch cultivation in an air-lift fermenter and a jar fermenter was examined for enhancing the productivity because of small amounts of mycelial weight and slow growth in case of a liquid culture for H. erinaceum. We found that air lift fermenter system was more effective than jar fermenter for mycelial production of H. erinaceum, and mycelial morphology was a critical factor of the growth. By scale-up and cultivation based on morphological analysis, the conditions for mass production with 30 L and 500 L jar fermenter was 200 and 150 rpm of agitation speed at 1 vvm of aeration rate, respectively, and mycelial dry weight under these conditions was enhanced to about $13{\sim}14g/L$.

Characteristics of the Bioreactors of Hydrogen-producing Immobilized Cells (II) -Overall Effectiveness Factor in Continuous Reactors- (수소생산 고정화 생물 반응기의 특성(II) -연속 반응기에서의 총괄 효율인자 -)

  • 이명재;선용호;한정우;조영일
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.6
    • /
    • pp.510-516
    • /
    • 1988
  • The effects of input substrate concentration and dilution rate on mass transfer resistance in the operation of immobilized cell reactors were investigated using Rhodospirillum rubrum KS-301 immobilized by Ca alginate as reactor element and glucose as growth-limiting substrate. The kinetic parameters were obtained to estimate effectiveness factors. In the packed-bed reactor, internal mass transfer resistance was predominating although external resistance could not be neglected. The overall effectiveness factor was decreased with increase of dilution rate. In the continuous stirred-tank reactor, external resistance was nearly neglected and the overall effectiveness factor was not affected by dilution rate. In this experiment the overall effectiveness factors in PBR and CSTR were estimated to be 0.70 and 0.71 at D$_{i}$ = 0.2/h, R = 0.15 cm, and S$_{i}$ : 1.0g/L, respectively.

  • PDF

Development of Bioreactors for Hydrogen-Producing Immobilized Photosynthetic Bacteria(II) : Evaluation of Immobilized Bioreactor for Hydrogen Productivity and Mass Transfer Resistance (광합성 박테리아를 이용한 고성능 수소 생산 고정화 생물반응기의 개발(II) :고정층 반응기와 연속 교반탱크 반응기에서의 수소 생산성 및 물질전달 저항 비교)

  • 선용호;한정우
    • KSBB Journal
    • /
    • v.8 no.3
    • /
    • pp.256-265
    • /
    • 1993
  • In this study, it was observed that hydrogen productivity varied with changes of input g1ucose concentration and dilution rate in FBR( Fixed Bed Reactor), and CSTR(Continuous Stirred Tank Reactor). We evaluated and compared reaction rate Parameters and internal external and overall mass transfer resistances of immobilized carrier in both reactors. Apparent $K_m$ decreased with increasing dilution rate in FBR but showed a constant value above $0.4h^{-1}$ of dilution rate in CSTR. The experimental results in FBR showed nearly analogous to those in CSTR, however, the performance of FBR resulted in lower hydrogen productivity and an external effectiveness factor but a higher internal effectiveness factor than in CSTR. The overall effectiveness factor obtained with various input 91ucose concentrations showed similar values in both reactors.

  • PDF

Effect of Hydrophilic- and Hydrophobic-Media on the Fermentative Hydrogen Production in Trickling Bed Biofilter (생물학적 수소생산을 위한 Trickling Bed Biofilter에서의 친수성과 소수성 담체의 영향)

  • Jeon, Byung-Seung;Lee, Sun-Mi;Kim, Yong-Hwan;Chae, Hee-Jeong;Sang, Byoung-In
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.465-469
    • /
    • 2006
  • Two mesophilic trickling bed bioreactors filled with two different types of media, hydrophilic- and hydrophobic-cubes, were designed and tested for hydrogen production via anaerobic fermentation of sucrose. Each reactor consisted of a column packed with polymeric cubes and inoculated with heat-treated sludge obtained from anaerobic digestion tank. A defined medium containing sucrose was fed with changing flow rate into the capped reactor, hydraulic retention time and recycle rate. Hydrogen concentrations in gas-phase were constant, averaging 40% for all conditions tested. Hydrogen production rates increased up to $10.5 L{\cdot};h^{-1}{\cdot}L^{-1}$ of reactor when influent sucrose concentrations and recycle rates were varied. Hydrophobic media provided higher value of hydrogen production rate than hydrophilic media at the same operation conditions. No methane was detected when the reactor was under a normal operation. The major fermentation by-products in the liquid effluent of the both trickling biofilters were acetate and butyrate. The reactor filled with hydrophilic media became clogged with biomass and bio gas, requiring manual cleaning of the system, while no clogging occurred in the reactor with hydrophobic media. In order to make long-term operation of the reactor filled with hydrophilic media feasible, biofilm accumulation inside the media in the reactor with hydrophilic media and biogas produced from the reactor will need to be controlled through some process such as periodical backwashing or gas-purging. These tests using trickling bed biofilter with hydrophobic media demonstrate the feasibility of the process to produce hydrogen gas in a trickle-bed type of reactor. A likely application of this reactor technology could be hydrogen gas recovery from pre-treatment of high carbohydrate-containing wastewaters.

  • PDF