Browse > Article
http://dx.doi.org/10.5010/JPB.2006.33.3.185

Chloroplast Genetic Transformation in Higher Plants: An Encounter Between Prokaryote and Eukaryote  

Chung, Hwa-Jee (Plant Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology)
Suh, Young-Bae (Natural Products Research Institute, Seoul National University)
Jeong, Won-Joong (Plant Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology)
Min, Sung-Ran (Plant Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology)
Liu, Jang-R. (Plant Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology)
Publication Information
Journal of Plant Biotechnology / v.33, no.3, 2006 , pp. 185-194 More about this Journal
Abstract
Chloroplasts are believed to be descended from certain cyanobacteria, which were taken up by phagocytosis into a host cell and lived there in a symbiotic relationship. In contrast to the current static concept on the chloroplast genome, its dynamism has been recently demonstrated: the chloroplast genome is active in intramolecular homolgous recombination, producing subgenomic circles when it obtains homolgous sequences via genetic transformation. Chloroplast tranformation in higher plants provides many advantages over nuclear transformation that include higher expression levels of transgenes, polycistronic expression of transgenes, and maternal transmission of transgenes. Tobacco has been used as a model for chloroplast genetic transformation. However, it is recently possible to transform the chloroplasts of other major food and economic crops including rice, soybean, and cotton. Chloroplast-transformed crops will be able to replace bioreactors using microorganisms for production of value-added proteins in future.
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 Carrer H, Hockenberry TN, Svab Z, Maliga P (1993) Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol Gen Genet 241: 49-56   DOI
2 Chase MW, Soltis DE, Olmstead RG, Morgan D, Les DH, Mishler BD, Duvall MR, Price RA, Hills HG, Qiu Y-L, Kron KA, Rettig JH, Conti E, Palmer JD, Manhart JR, Sytsma KJ, Michaels HJ, Kress WJ, Karol KG, Clark WO, Hedren M, Gaut BS, Jansen RK, Kim K-J, Wimpee CF, Smith JF, Fumier GR, Strauss SH, Xiang Q-Y, Plunkett GM, Soltis PS, Swensen SM, Williams SE, Gadek PA, Quinn CJ, Eguiarte LE, Golenberg E, Learn, Jr. GH, Graham SW, Barrett SCH, Dayanandan S and Albert VA (1993) Phylogenetics of seed plants: an analysis of nucleotide sequences from the plastid gene rbcL. Annals of Missouri Botanical Garden 80: 528-580   DOI   ScienceOn
3 Chiba Y (1951) Cytochemical studies on chloroplasts. I. Cytologic demonstration of nucleic acids in chloroplasts. Cytologia (Tokyo) 16: 259-264   DOI
4 dePamphilis CW, Palmer JD (1990) Loss of photosynthetic (2001) Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol 127: 852-862   DOI
5 dePamphilis CW, Palmer JD (1990) Loss of photosynthetic and chlororespiratory genes from the plastid genome of a parasitic flowering plant. Nature 348: 337-339   DOI   ScienceOn
6 Doyle JJ, Davis Jl, Soreng RJ, Garvin D, Anderson MJ (1992) Chloroplast DNA inversion and the origin of the grass family (Poaceae). Proc Natl Acad Sci USA 89: 7723-7726
7 Jeong SW, Jeong WJ, Woo JW, Choi DW, Park VI, Liu JR (2004) Dicistronic expression of the green fluorescent protein and antibiotic resistance genes in the plastid for selection and tracking of plastid-transformed cells in tobacco. Plant Cell Rep 22: 747-751   DOI
8 Bausher MG, Singh NO, Lee SB, Jansen RK, Daniell H (2006) The complete chloroplast genome sequence of Citrus sinensis (L.) Osbeck var 'Ridge Pineapple: organization and phylogenetic relationships to other angiosperms. BMC Plant Biol 6: 21   DOI   ScienceOn
9 Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM, Shark KB, Sanford JC (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiies. Science 240: 1534-1538   DOI
10 Jansen RK, Raubeson LA, Boore JL, dePamphilis CW, Chumley TW, Haberle RC, Wyman SK, Alverson AJ, Peery R, Herman SJ, Fourcade HM, Kuehl JV, McNeal JR, Leebens-Mack J, Cui L (2005) Methods for obtaining and analyzing whole chloroplast genome sequences. Methods Enzymol 395: 348-384   DOI   ScienceOn
11 Cosner ME, Jansen RK, Palmer JD, Downie SR (1997) The highly rearranged chloroplast genome of Trachelium caeruleum (Campanulaceae): multiple inversions, inverted repeat expansion and contraction, transposition, insertions/deletions and several repeat families. Curr Genet 31: 419-429   DOI
12 Daniell H, Muthukumar B, Lee SB (2001) Marker free transgenic plants: engineering the chloroplast genome without the use of antibiotic selection. Curr Genet 39: 109-116   DOI
13 Lavin M, Doyle JJ, Palmer JD (1990) Systematic and evolutionary significance of the loss of the large chloroplast DNA inverted repeat in the family Leguminosae. Evolution 44: 390-402   DOI   ScienceOn
14 Daniell H, Lee SB, Grevich J, Saski C, Quesada-Vargas T, Guda C, Tomkins J, Jansen RK (2006) Complete chloroplast genome sequences of Solanum bulbocastanum, Solanum Iycopersicum and comparative analyses with other Solanaceae genomes. Theor Appl Genet 112: 1503-1518   DOI
15 De Cosa B, Moar W, Lee SB, Miller M, Daniell H (2001) Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol 19: 71-74   DOI   ScienceOn
16 DeGray G, Rajasekaran K, Smith F, Sanford J, Daniell H ( 2001) Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol 127: 852-862   DOI
17 Maliga P (2003) Progress towards commercialization of plastid transformation technology. Trends Biotechnol 21: 20-28
18 Martin M, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 99: 12246-12251
19 Goremykin W, Hirsch-Ernst KI, Wolfl S, Hellwig FH (2003a) Analysis of the Amborella trichopoda chloroplast genome sequence suggests that Amborella is not a basal angiosperm. Mol Bioi Evol 20: 1499-1405   DOI   ScienceOn
20 Goremykin W, Hirsch-Ernst KI, Wolfl S, Hellwig FH (2003b) The chloroplast genome of the 'basal' angiosperm Calycanthus fertilis - structural and phylogenetic analyses. Plant Sys Evol 242: 119-135   DOI
21 Iamtham S, Day A (2000) Removal of antibiotic resistance genes from transgenic tobacco plastids. Nat Biotechnol 18: 1172-1176   DOI   ScienceOn
22 Grevich JJ, Daniell H (2005) Chloroplast genetic engineering: recent advances and future perspectives. Crit Rev Plant Sci 24: 83-107   DOI   ScienceOn
23 Graham SW, Olmsgtead RW (2000) Utility of 17 chloroplast genes for inferring the phylogeny of the basal angiosperms. Amer J Bot 87: 1712-1730   DOI
24 Hoot SB, Palmer JD (1994) Structural rearrangements, including parallel inversions, within the chloroplast genome of Anemone and related genera. J Mol Evol 38: 274-281
25 Jansen RK, Palmer JD (1987) A chloroplast inversion marks an ancient evolutionary split in the sunflower family (Asteraceae). Proc Natl Acad Sci USA 84: 5818-5822
26 Raubeson LA and Stein DB (1995) Insights into fern evolution from mapping chloroplast genomes. American Fern Journal 85: 193-204   DOI   ScienceOn
27 Ravi V, Khurana JP, Tyagi AK, Khurana P (2006) The chloroplast genome of mulberry: complete nucleotide sequence, gene organization and comparative analysis. Tree Genetics and Genomes (in press)
28 Ruhlman T, Lee SB, Jansen RK, Hostetler JB, Tallon LJ, Town CD, Daniell H (2006) Complete plastid genome sequence of Daucus carata: implications for biotechnology and phylogeny of angiosperms. BMC Genomics 7: 222   DOI   ScienceOn
29 Jeong WJ, Park VI, Suh KH, Raven JA, Voo WJ, Liu JR (2002) A large population of small chloroplasts confer more effective chloroplast movement over a few enlarged chloroplasts in tobacco leaf cells. Plant Physiol 129: 112-121   DOI   ScienceOn
30 Khan MS, Maliga P (1999) Fluorescent antibiotic resistance marker for tracking plastid transformation in higher plants. Nat Biotechnol 17: 910-915   DOI   ScienceOn
31 Kusnadi A, Nikolov G, Howard, J (1997) Production of recombinant proteins in plants: practical considerations. Biotechnol Bioengineer 56: 473-484   DOI   ScienceOn
32 Kim JS, Jung JD, Lee JA, Park HW, Oh KH, Jeong WJ, Choi DW, Liu JR, Cho KY (2006) Complete sequence and organization of the cucumber (Cucumis sativus L. cv. Baekmibaekdadagi) chloroplast genome. Plant Cell Rep 25: 334-340   DOI
33 Kota M, Daniell H, Varma S, Garczynski SF, Gould F, Maar WJ (1999) Overexpression of the Bacillus thuringiensis (Bt) Cry2Aa2, protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects. Proc Natl Acad Sci USA 96: 1840-1845
34 Kumar S, Dhingra A, Daniell H (2004) Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Plant Physiol 136: 2843-2854   DOI   ScienceOn
35 Wakasugi T, Sugita M, Tsudzuki T, Sugiura M. (1998) Updated gene map of tobacco chloroplast DNA. Plant Mol Bioi Rep 16: 231-241   DOI   ScienceOn
36 Wakasugi T, Tsudzuki J, Ito S, Nakashima K, Tsudzuki T, Sugiura M (1994) Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black Pine Pinus thunbergii. Proc Nat! Acad Sci USA 91: 9794-9798
37 Wakasugi T, Tsudzuki T, Sugiura M (2001) The genomics of land chloroplasts: gene content and alteration of genomic information by RNA editing. Photosyn Res 70: 107-118   DOI
38 Martin W, Stoebe B, Goremykin V, Hansmann S, Hasegawa M, Kowallik KV (1998) Gene transfer to the nucleus and the evolution of chloroplasts. Nature 393: 162-165   DOI   ScienceOn
39 Odintsova MS, Yurina NP (2003) Plastid genome of higher plants and algae: structure and functions. Mol Bioi 37: 649-662   DOI
40 McBride KE, Svab Z, Schaaf DJ, Hogan PS, Stalker DM, Maliga P (1995) Amplification of a chimeric Bacillus gene in chloroplasts leads to an extraordinary level of an insecticidal protein in tobacco. Biotechnology (NY) 13: 362-365   DOI
41 Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, lnokuchi H, Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature 322: 572-574   DOI
42 Palmer JD, Aldrich J, Thompson WF (1987b) Chloroplast evolution among legumes: loss of a large inverted repeat occurred prior to other sequence rearrangements. Curr Genet 11: 275-286   DOI
43 Raubeson LA, Jansen RK (1992) Chloroplast DNA evidence on the ancient evolutionary split in vascular land plants. Science 255: 1697-1699   DOI   ScienceOn
44 Tsudzuki J, Nakashima K, Tsudzuki T, Hiratsuka J, Shibata M, Wakasugi T, Sugiura M (1992) Chloroplast DNA of black pine retains a residual inverted repeat lacking rRNA genes: nucleotide sequences of trrQ., trnK, psbA, trri and trnH and the absence of rps16. Mol Gen Genet 232: 206-214
45 Chung HJ, Jung JD, Park HW, Kim JH, Cha HW, Min SR, Jeong WJ, Liu JR (2006) The complete chloroplast genome sequences of Solanum tuberosum and comparative analysis with Solanaceae species identified the presence of a 241-bp deletion in cultivated potatochloroplast DNA sequence. Plant Cell Rep (in press)
46 Schmitz-Linneweber C, Regel R. Du TG, Hupfer H, Herrmann RG, Maier RM (2002) The plastid chromosome of Atropa belladonna and its comparison with that of Nicotiana tabacum: the role of RNA editing in generating divergence in the process of plant speciation. Mol BioI Evol 19: 1602-1612   DOI   ScienceOn
47 Svab Z, Hajdukiewicz P, Maliga P (1990) Stable transformation of plastids in higher plants. Proc Natl Acad Sci USA 87: 8526-8530
48 Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chungwongse J, Obokata J, Yamaguchi-Shin ozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5: 2043-2049
49 Sidorov VA, Kasten D, Pang SZ, Hajdukiewicz PT, Staub JM, Nehra NS (1999) Technical Advance: Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. Plant J 19: 209-216   DOI   ScienceOn
50 Steane DA (2005) Complete Nucleotide Sequence of the Chloroplast Genome from the Tasmanian Blue Gum, Eucalyptus globulus (Myrtaceae). DNA Res 2005 12: 215-220   DOI   ScienceOn
51 Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA 90: 913-917
52 Tregoning JS, Nixon P, Kuroda H, Svab Z, Clare S, Bowe F, Fairweather N, Ytterberg AJ, van Wijk KJ, Dougan G, Maliga P (2003) Expression of tetanus toxin Fragment C in tobacco chloroplasts. Nucleic Acids Res 31: 1174-1179   DOI   ScienceOn
53 Wolfe KH, Morden CW, Palmer JD (1992) Function and evolution of minimal plastid genome from a nonphotosynthetic parasitic plant. Proc Natl Acad Sci USA 89: 10648-10652
54 Yukawa M, Tsudzuki T, Sugiura M (2006) The chloroplast genome of Nicotiana sylvestris and Nicotiana tomentosiformis. complete sequencing confirms that the Nicotiana sylvestris progenitor is the maternal genome donor of Nicotiana tabacum. Mol Genet Genornics 275: 367- 373   DOI
55 Klaus SM, Huang FC, Golds TJ, Koop HU (2004) Generation of marker-free plastid transformants using a transiently co integrated selection gene. Nat Biotechnol 22: 225-229   DOI   ScienceOn
56 Maliga P (2002) Engineering the plastid genome of higher plants. Curr Opin Plant Biol 5: 164-172   DOI   ScienceOn
57 Liu JR, Jeong WJ, Chung HJ, Min SR, Park JV (2006) Plastid transformation system to prevent the intramolecular recombination of transgene. PCT/2006/004377
58 Dhingra A, Daniell H (2006) Chloroplast genetic engineering via organogenesis or somatic embryogenesis. Methods Mol Biol 323: 245-262
59 Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun CR, Meng BY, Li YQ, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M (1989) The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol Gen Genet 217: 185-194   DOI
60 Lee SB, Kwon HB, Kwon SJ, Park SC, Jeong MJ, Han SE, Byun MO, Daniell H (2003) Accumulation of trehalose within transgenic chloroplasts confers drought tolerance. Mol Breed 11: 1-13   DOI   ScienceOn
61 Sikdar SR, Serino G, Chaudhuri S, Maligap (1998) Plastid transformation in Arabidopsis thaliana Plant Cell Rep 18: 20-24   DOI
62 Daniell H, Datta R, Varma S, Gray S, Lee SB (1998) Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nat Biotechnol 16: 345-348   DOI   ScienceOn
63 Maliga P (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55: 289-313   DOI
64 Dufourmantel N, Tissot G, Goutorbe F, Garcon F, Muhr C, Jansens S, Pelissier B, Peltier G, Dubald M (2005) Generation and analysis of soybean plastid transformants expressing Bacillus thuringiensis CrylAb protoxin. Plant Mol Bioi 58: 659-668   DOI
65 Palmer JD, Nugent JM, Herbon LA (1987a) Unusual structure of geranium chloroplast DNA: a triple-sized inverted repeat, extensive gene duplications, multiple inversions and two repeat families. Proc Natl Acad Sci USA 84: 769-773
66 Ruf S, Hermarrn M, Berger IJ, Carrer H, Bock R (2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. nature Biotech 19: 870-875   DOI   ScienceOn