DOI QR코드

DOI QR Code

Experimental Evaluation Method of Mass Transfer Coefficient on Biotrickling Filtration for Air Pollution Control

대기오염제어를 위한 생물살수여과법에서 물질전달계수 실험평가방법에 관한 연구

  • Won, Yang-Soo (Department of Environmental Engineering, Yeungnam University) ;
  • Jo, Wan-Keun (Department of Environmental Engineering, Kyungpook National University)
  • Received : 2014.09.02
  • Accepted : 2015.03.06
  • Published : 2015.08.01

Abstract

Biological treatment is promising alternative to conventional air pollution control method. Bioreactors for air pollution control have found most of their success in the treatment of dilute and high flow waste air streams containing volatile organic compounds and odor. The studies of mass transfer in biotrickling filters for air pollution control were of importance in order to control and optimize the purification process. The objectives of this study were to develop the experimental methodologies to evaluate the mass transfer coefficients of gas/liquid(trickling liquid), gas/solid(biomass) and liquid/solid in three phase biotrickling filtration. Also, this study characterized the influence factors on mass transfer such as dynamic holdup volume, gas/liquid flow rate ratio, biomass weight in reactor and recirculation rate of trickling medium for each phase of biotrickling filter.

생물학적 방법에 의한 대기오염물질 처리는 기존의 처리방법을 대체할 수 있는 방법으로 각광을 받고 있다. 생물학적 처리방법은 유기화합물 또는 악취가 포함된 저농도 고유량의 공기를 처리하는데 효과적이다. 생물살수여과법을 이용한 대기오염물질 제거에서 물질전달 연구는 공정 최적화를 위해 매우 중요한 부분이다. 본 연구에서는 3상의 물질전달이 이루어지는 생물살수여과법에서 기체/액체(살수액), 기체/고체(미생물), 액체/고체 물질전달 실험방법 개발과 물질전달 현상을 고찰하였다. 또한 본 연구에서는 각 상간에서 물질전달에 영향을 미치는 인자로 동적적체량, 기/액 유량비, 반응기내 미생물량, 살수액 순환량 등에 대해 고찰하였다.

Keywords

References

  1. Devinny, J. S., Deshusses, M. A. and Webster, T. S., Biofiltration for Air Pollution Control, Lewis publisher, NY(2009).
  2. Won, Y. S. and M. A. Desusses, "Technology of VOC Removal in Air by Biotrickling Filter," J. Korean Soc. Atmo, Environ., 19(1), 101-112(2003).
  3. Won, Y. S., "Comparison for Thermal Decomposition and Product Distribution of Chloroform under Each Argon or Hydrogen Reaction Atmosphere," Korean J. Chem. Eng, 29(12), 1745-1751(2012). https://doi.org/10.1007/s11814-012-0086-0
  4. Lee, D. H., Kim, S. D., Kim, B. N., Won, Y. S. and Han, D. H., "Microwave Effect in Removal Process of NO by Electron Beam Irradiation and Quantitative Prediction of the removed NO," Korean J. Chem. Eng., 26(6), 1601-1607(2009). https://doi.org/10.1007/s11814-009-0343-z
  5. Kim, K. O., Kim, Y. J. and Won, Y. S., "Removal of VOCs and $H_{2}S$ from Waste Gas with Biotrickling Filter," J. Korean Ind. Eng. Chem., 19(5), 519-525(2008).
  6. Gabriel, D. and Deshusses, M. A., "Technical and Economical Analysis of the Conversion of Full Scale Scrubber to a Biotrickling Filter for Odor Control," Wat. Sci. Technol., 50(4), 309-318(2004).
  7. Won, Y. S., "Thermal Decomposition of Trichloroethylene under a Reducing Atmosphere of Hydrogen," Korean J. Chem. Eng., 26(1), 36-41(2009). https://doi.org/10.1007/s11814-009-0007-z
  8. Kennes, C. and Veiga, M. C. Bioreactors for Waste Gas Treatment, Kluwer Academic Publishers, Boston(2012).
  9. Deshusses, M. A. and Cox, H. H. J., Encyclopaedia Environmental Microbiology, McGraw Hill, NY(2008).
  10. Philip, L. and Deshusses, M. A., "Sulfur Dioxide Treatment from Flue Gases Using a Biotrickling Filter," Environ. Sci. Technol., 37(9), 1978-1982(2003). https://doi.org/10.1021/es026009d
  11. Gabriel, D. and Deshusses, M. A., "Retrofitting Existing Chemical Scrubbers to Biotrickling Filters for $H_{2}S$ Emission Control," Proc. Natl. Acad. Sci., 100(11), 6308-6312(2003).
  12. Zhu, X., Alonso, C. and Suidan, M. T., "The Effect of Liquid Phase on VOC Removal in Trickle-Bed Biofilters," Wat. Sci. Tech., 38(3), 315-322(1998). https://doi.org/10.1016/S0273-1223(98)00557-5
  13. Zhu, X, Suidan, M. T. and Alonso, C., "Biofilm Structure and Mass Transfer in a Gas Phase Trickle-Bed Biofilter," Wat. Sci. Tech., 43(1), 285-293(2001).
  14. Pedersen, A. R. and Arvin, E., "Effect of Biofilm Growth on Gas-Liquid Mass Transfer in a Tickling Filter for Waste Gas Treatment," Water Res., 31(8), 1963-1968(1997). https://doi.org/10.1016/S0043-1354(97)00056-0
  15. Pedersen, A. R. and Arvin, E., "Toluene Removal in a Biofilm Reactor for Waste Gas Treatment," Wat. Sci. Tech., 36(1), 69-76(1997). https://doi.org/10.1016/S0273-1223(97)00324-7
  16. Cox, H. H. J. and Deshusses, M. A., "Effect of Starvation on the Performance of Re-acclimation of Biotrickling Filters for Air Pollution Control," Environ. Sci. Technol., 36, 3069-3073(2002).
  17. Won, Y. S., "Biotreatment Technologies for Air Pollution Control," Clean Technol., 13(1), 1-15(2007).
  18. Won, Y. S., "Pyrolytic Reaction Pathway of Chloroethylene in Hydrogen Reaction Atmosphere," Korean Chem. Eng. Res., 49(5), 510-515(2011). https://doi.org/10.9713/kcer.2011.49.5.510
  19. Deshusses, M. A., Hamer, G. and Dunn, I. J., "Behavior of Biofilters for Waste Air Biotreatment. I. Dynamic Model Development," Environ. Sci. Technol., 29, 1048-1058(1995). https://doi.org/10.1021/es00004a027
  20. Deshusses, M. A., Hamer, G. and Dunn, I. J., "Behavior of Biofilters for Waste Air Biotreatment. II. Experimental Evaluation of Dynamic Model," Environ. Sci. Technol., 29, 1059-1068(1995). https://doi.org/10.1021/es00004a028

Cited by

  1. Mass Transfer Model and Coefficient on Biotrickling Filtration for Air Pollution Control vol.53, pp.4, 2015, https://doi.org/10.9713/kcer.2015.53.4.489