• Title/Summary/Keyword: Biomineralization

Search Result 76, Processing Time 0.026 seconds

Effect of bicarbonate concentration on iron biomineralization by psychrotolerant bacteria

  • Lee, Sang-Han;Yul-Roh;Lee, Insung
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.236-236
    • /
    • 2003
  • Anaerobic Fe(III)-reducing bacteria are known to be able to reduce crystalline and amorphous Fe(III) oxides. Anaerobic Fe(III)-reducing bacterial reduction can induce several kinds of secondary minerals (Fe(II) containing minerals) such as magnetite, siderite, vivianite [($Fe_{3}(PO_{4}{\cdot}2H_{2}O$], and iron sulfide (FeS) according to variety of geochemical and biological conditions. (omitted)

  • PDF

Mineralogy and Biogeochemistry of Intertidal Flat Sediment, Muan, Chonnam, Korea (전남 무안 갯벌 퇴적물에 관한 광물학적 및 생지화학적 연구)

  • Park, Byung-No;Lee, Je-Hyun;Oh, Jong-Min;Lee, Seuug-Hee;Han, Ji-Hee;Kim, Yu-Mi;Seo, Hyun-Hee;Roh, Yul
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.1 s.51
    • /
    • pp.47-60
    • /
    • 2007
  • While sedimentological researches on Western coastal tidal flats of Korea have been much pelformed previously, mineralogical and biogeochemical studies are beginning to be studied. The objectives of this study were to investigate mineralogical characteritics of the inter-tidal flat sediments and to explore phase transformation of iron(oxyhydr)oxides and biomineralization by metal-reducing bacteria enriched from the inter-tidal flat sediments from Muan, Jeollanam-do, Korea. Inter-tidal flat sediment samples were collected in Chungkye-myun and Haeje-myun, Muan-gun, Jeollanam-do. Particle size analyses were performed using the pipette method and sedimentation method. The separates including sand, silt and clay fractions were examined by scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), and X-ray diffiaction (XRD). After enriching the metal-.educing bacteria from the into,-tidal flat sediments, the bacteria were used to study phase transformation of the synthesized iron (oxyhydr)oxides and iron biomineralization using lactate or glucose as the electron donors and Fe(III)-containing iron oxides as the electron accepters. Mineralogical studies showed that the sediments of tidal flats in Chung]rye-myun and Haeje-myun consist of quartz, plagioclase, microcline, biotite, kaolinite and illite. Biogeochemical researches showed that the metal-reducing bacteria enriched from the inter-tidal flat sediments reduced reddish brown akaganeite and mineralized nanometer-sized black magnetite. The bacteria also reduced the reddish brown ferrihydrite into black amorphous phases and reduced the yellowish goethite into greenish with formation of nm-sized phases. These results indicate that microbial Fe(III) reduction may play one of important roles in iron and carbon biogeochemistry as well as iron biomineralization in subsurface environments.

Development of Self-Repairing Smart Concrete Using Micro-Biologically Induced Calcite Precipitation (미생물의 방해석 석출 작용을 이용한 자기보수 스마트 콘크리트 개발에 관한 연구)

  • Kim, Wha-Jung;Ghim, Sa-Youl;Park, Sung-Jin;Choi, Kil-Jun;Chun, Woo-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.547-557
    • /
    • 2010
  • This paper presents a study on the development of next generation smart concrete in an eco-friendly manner using micro-biologically induced calcite precipitation (MICP) via microbial biomineralization. It seems that currently, the reformation and functional improvement of concrete using MICP can be achieved using Sporosarcina pasteurii, which is a representative microorganism that produces calcite precipitation. Based on previous studies on MICP the biochemical tests and crystallinity evaluation of cement using sporoasrcina pasteurii and four additional micro-organisms from the concrete structures as identified by 16S rDNA sequence analysis were conducted. Also by applying the Sporosarcina pasteurii and separated four effective micro-organisms from the concrete structures to mortar, the compressive strength improvement by varying curing conditions, repair of crack were examined, and plans for future study were suggested. The effect of the application of effective micro-organisms can lead to the development of a new material that will contribute to resolution of environmental problems and facilitate repair work, and this can also serve as a new research theme in the future. In addition, the importance of this study is to use micro-organism, which is found common in concrete structures, this new microbial is not only environmentally safe but also persists in the natural environment for an extended period of time. Therefore, it seems to have a great potential to became a new environmentally low-burdened functional material.

Characterization of CO2 Biomineralization Microorganisms and Its Mineralization Capability in Solidified Sludge Cover Soil in Landfill (매립지 복토용 슬러지 고화물내 이산화탄소 생광물화 고정균 분석 및 생광물화능 평가)

  • Ahn, Chang-Min;Bae, Young-Shin;Ham, Jong-Heon;Chun, Seung-Kyu;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.8
    • /
    • pp.598-606
    • /
    • 2013
  • This study was performed to determine whether biomineralization microbes were actively present underneath landfill cover soil producing biocalcification. From this, various types of microbes were observed. Among them, two species were dominantly found; Bacillus megaterium and Alkaliphilus metalliredigens that were known as biominerlization bacteria. With those microbes, $CO_2$ was more highly consumed than without bacteria. In response, the calcium carbonate mineral was produced at 30% (wt) greater than that of the control. At the same time, TG-DTA was successfully used for quantification of $CO_2$ consumed forming calcium carbonate minerals resulting from biocalcification. It was decided that the presence of solidified sewage sludge cake utilized as a cover soil in the landfill could efficiently contribute to possible media adaptably and naturally sequestering $CO_2$ producing from the landfill.

A brief review on Oyster shells origin and sedimentary evolution for the formation of limestone

  • Ramakrishna, Chilakala;Thriveni, Thenepalli;Whan, Ahn Ji
    • Journal of Energy Engineering
    • /
    • v.27 no.3
    • /
    • pp.48-56
    • /
    • 2018
  • The shell waste biomineralization process has known a tremendous metamorphosis and also the nanostructure with the identification of matrix proteins in oyster shells. However, proteins are represented in minor shell components and they are the major macromolecules that control biocrystal synthesis. Aragonite and calcite were derived from molluscan shells and evaluated the source of carbonate minerals and it helps for the formation of limestone. The oyster shell wastes are large and massive. The paleoecological study of oyster beds has discovered a near-shore and thin Upper Rudeis formation with storm influence during the accumulation of oysters with highly altered by disarticulation, bioerosion, and encrustation. It is possible even in the Paleozoic mollusks provided sufficient carbonate entirely to the source of microcrystalline of limestone. The present review is to discuss paleoecologically a number of oyster shell beds accumulated and sediment to form the different types of limestone during the Middle Miocene time.

Calcite-Forming Bacteria for Compressive Strength Improvement in Mortar

  • Park, Sung-Jin;Park, Yu-Mi;Chun, Woo-Young;Kim, Wha-Jung;Ghim, Sa-Youl
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.4
    • /
    • pp.782-788
    • /
    • 2010
  • Microbiological calcium carbonate precipitation (MCP) has been investigated for its ability to improve the compressive strength of mortar. However, very few studies have been conducted on the use of calcite-forming bacteria (CFB) to improve compressive strength. In this study, we discovered new bacterial genera that are capable of improving the compressive strength of mortar. We isolated 4 CFB from 7 environmental concrete structures. Using sequence analysis of the 16S rRNA genes, the CFB could be partially identified as Sporosarcina soli KNUC401, Bacillus massiliensis KNUC402, Arthrobacter crystallopoietes KNUC403, and Lysinibacillus fusiformis KNUC404. Crystal aggregates were apparent in the bacterial colonies grown on an agar medium. Stereomicroscopy, scanning electron microscopy, and X-ray diffraction analyses illustrated both the crystal growth and the crystalline structure of the $CaCO_3$ crystals. We used the isolates to improve the compressive strength of cement-sand mortar cubes and found that KNUC403 offered the best improvement in compressive strength.

Fabrication and Cell Culturing on Carbon Nanofibers/Nanoparticles Reinforced Membranes for Bone-Tissue Regeneration

  • Deng, Xu Liang;Yang, Xiao Ping
    • Carbon letters
    • /
    • v.13 no.3
    • /
    • pp.139-150
    • /
    • 2012
  • Poly-L-lactic acid (PLLA), PLLA/hydroxyapatite (HA), PLLA/multiwalled carbon nanotubes (MWNTs)/HA, PLLA/trifluoroethanol (TFE), PLLA/gelatin, and carbon nanofibers (CNFs)/${\beta}$-tricalcium phosphate (${\beta}$-TCP) composite membranes (scaffolds) were fabricated by electrospinning and their morphologies, and mechanical properties were characterized for use in bone tissue regeneration/guided tissue regeneration. MWNTs and HA nanoparticles were well distributed in the membranes and the degradation characteristics were improved. PLLA/MWNTs/HA membranes enhanced the adhesion and proliferation of periodontal ligament cells (PDLCs) by 30% and inhibited the adhesion of gingival epithelial cells by 30%. Osteoblast-like MG-63 cells on the randomly fiber oriented PLLA/TEF membrane showed irregular forms, while the cells exhibited shuttle-like shapes on the parallel fiber oriented membrane. Classical supersaturated simulated body fluids were modified by $CO_2$ bubbling and applied to promote the biomineralization of the PLLA/gelatin membrane; this resulted in predictions of bone bonding bioactivity of the substrates. The ${\beta}$-TCP membranes exhibit good biocompatibility, have an effect on PDLC growth comparable to that of pure CNF membrane, and can be applied as scaffolds for bone tissue regeneration.

Calcium-related genes associated with intracellular calcification of Emiliania huxleyi (Haptophyta) CCMP 371

  • Nam, Onyou;Shiraiwa, Yoshihiro;Jin, EonSeon
    • ALGAE
    • /
    • v.33 no.2
    • /
    • pp.181-189
    • /
    • 2018
  • Emiliania huxleyi (a haptophyte) is the most abundant coccolithophore species that produces delicate calcite scales called coccoliths. In this study, we identified several candidate genes associated with coccolith production by comparing the transcriptomes of the calcifying (CCMP 371) and non-calcifying (CCMP 2090) strains of E. huxleyi. Among the candidates, genes highly expressed in CCMP 371 were identified. To confirm whether these genes are associated with calcification, we modulated coccolith production in CCMP 371 by culturing it at different calcium concentrations. At an ambient (10 mM) concentration of calcium in the growth medium, CCMP 371 sustained its calcifying ability. However, at a low (0.1 mM) concentration or absence of calcium, there was no calcite formation, demonstrating that calcium-limiting conditions negatively affect calcification. We also evaluated the expression patterns of the putative genes in cells grown at different calcium concentrations by quantitative reverse transcription polymerase chain reaction. In addition, we showed that the growth rate of cells cultured under calcium-limiting conditions does not differ from that under ambient conditions. Further studies are required to investigate the roles of the putative calcification-associated genes at the molecular level.

Bacterial Effects on Geochemical Behavior of Elements : An Overview on Recent Geomicrobiological Issues (원소의 지구화학적 거동에 미치는 박테리아의 영향 : 지구미생물학의 최근 연구 동향)

  • 이종운;전효택
    • Economic and Environmental Geology
    • /
    • v.33 no.5
    • /
    • pp.353-365
    • /
    • 2000
  • After their first appearance on Earth, bacteria have exerted significant influence on geochemical behavior of elements. Numerous evidence of their control on geochemistry through geologic history has been observed in a variety of natural environments. They have mediated weathering rate, formation of secondary minerals, redox transformation of metals and metalloids, and thus global cycling of elements. Such ability of bacteria receives so considerable attention from microbiologists, mineralogists, geologists, soil scientists, limnologists, oceanographers, and atmospheric scientists as well as geochemists that a new and interdisciplinary field of research called 'geomicrobiology' is currently expanding. Some recent subjects of geomicrobiology which are studied extensively are as follows: 1) Functional groups distributed on bacterial cell walls adsorb dissolved cations onto cell surfaces by electrostatic surface complexation, which is followed by hydrous mineral formation. 2) Dissimilatory metal reducing bacteria conserve energy to support growth by oxidation of organic matter coupled to reduction of some oxidized metals and/or metalloids. They can be effectively used in remediating environments contaminated with U, As, Se, and Cr. 3) Bacteria increase the rate of mineral dissolution by excreting proton and ligands such as organic acids into aqueous system. 4) Thorough investigation on the effects of biofilm on geochemical processes is needed, because most bacteria are adsorbed on solid substrates and form biofilms in natural settings.

  • PDF

Application of Electron Energy Loss Spectroscopy - Spectrum Imaging (EELS-SI) for Microbe-mineral Interaction (생지구화학적 광물변이작용 연구에서 전자에너지 손실 분광 분석 - 스펙트럼 영상법의 활용)

  • Yang, Kiho;Park, Hanbeom;Kim, Jinwook
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.63-69
    • /
    • 2019
  • The oxidation states of structural Fe in minerals reflect the paleo-depositional redox conditions for the biologically or abiotically induced mineral formation. Particularly, nano-scale analysis using high-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) is necessary to identify evidence for the microbial role in the biomineralization. HRTEM-EELS analysis of oxidation states of structural Fe and carbon bonding structure differentiate biological factors in mineralization by mapping the distribution of Fe(II)/Fe(III) and source of organic C. HRTEM-EELS technique provides geomicrobiologists with the direct nano-scale evidence of microbe-mineral interaction.