Browse > Article
http://dx.doi.org/10.5855/ENERGY.2018.27.3.048

A brief review on Oyster shells origin and sedimentary evolution for the formation of limestone  

Ramakrishna, Chilakala (Department of Bio-based Materials, School of Agriculture and Life Science, Chungnam National University)
Thriveni, Thenepalli (Department of R&D Team, Hanil Cement Corporation)
Whan, Ahn Ji (Center for Carbon Mineralization, Climate Change Mitigation and Sustainability Division, Korea Institute of Geosciences and Mineral Resources (KIGAM))
Publication Information
Abstract
The shell waste biomineralization process has known a tremendous metamorphosis and also the nanostructure with the identification of matrix proteins in oyster shells. However, proteins are represented in minor shell components and they are the major macromolecules that control biocrystal synthesis. Aragonite and calcite were derived from molluscan shells and evaluated the source of carbonate minerals and it helps for the formation of limestone. The oyster shell wastes are large and massive. The paleoecological study of oyster beds has discovered a near-shore and thin Upper Rudeis formation with storm influence during the accumulation of oysters with highly altered by disarticulation, bioerosion, and encrustation. It is possible even in the Paleozoic mollusks provided sufficient carbonate entirely to the source of microcrystalline of limestone. The present review is to discuss paleoecologically a number of oyster shell beds accumulated and sediment to form the different types of limestone during the Middle Miocene time.
Keywords
Oyster shell origin; Limestone formation; Sedimentation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sanders, D., 2004. Potential significance of syndepositional carbonate dissolution for platform banktop aggradation and sediment texture: a graphic modelling approach. Austrian Journal of Earth Sciences, 95-96, 71-79.
2 Bohm, F., Westphal, H., Bornholdt, S., 2003. Required but disguised: environmental signals in limestone-marl alternations. Palaeogeography, Palaeoclimatology, Palaeoecology, 189, 161-178.   DOI
3 Munnecke, A., Samtleben, C., 1996. The formation of micritic limestones and the development of limestone-marl alternations in the Silurian of Gotland, Sweden. Facies, 34, 159-176.   DOI
4 Wheeley, J.R. 2006. Taphonomy, sedimentology and palaeoenvironmental interpretation of Middle Ordovician Limestones, Jamtland, Sweden. PhD thesis, Cardiff University.
5 Brett, C.E., 1995. Sequence sffatigraphy, biostratigraphy, and taphonomy in shallow marine environments. Palaiost, 597-616.
6 Kauffmann, E. G., 1969. function and evolution. In : MOORE, R. C. (ed). Treatise on invertebrate paleontology, pt. N, v. 1, Mollusca 6, Bivalvia : Boulder, Golo., Geological Society of America and University of Kansas Press : N129-N205.
7 Loosanoff, V. L., 1965. The American or eastern oyster. U.S. Fish and Wildlife Service, Circular 205, 36 p.
8 Lam, K., Morton, B., 2004. The oysters of Hong Kong (Bivalvia : Ostreidae and Gryphaeidae). The Raffles Bulletin of Zoology, 52(1), 11-28.
9 Galtsoff, P. S., 1964. The American oyster Crassostrea virginica GMELIN. Fishery Bulletin Unites States Fish Wildlife Service, 64, 1-480.
10 Morrison, R., Brand, U., 1986. Paleoscene 5 : Geochemistry of Recent marine invertebrates. Geoscience Canada, 13, 237- 254.
11 Raif, W. 1982. Muschelkalk/Keuper bone-beds (Middle Triassic, SW-Germany): storm condensation in a regressive cycle. In : EINSELE, G. & A. SEILACHER (eds). Cyclic and event stratification : 299-325.
12 Pierce, M.E., Conover, J.T., 1954. A study of the growth of oysters under different ecological conditions in Great Pond. Biological Bulletin (Woods Hole), 107 (2), 318.
13 Seilacher, A., Meischner, D., 1965. Fazies-analyze im Palaozoikum des Oslo-Gebiets. Geologische Rundschau, 54, 596-619.   DOI
14 Grinnell, R.S., 1974. Vertical orientation of some shells on Florida oyster reefs. Journal of Sedimentary Petrology, 41, 116-122.
15 Einsele, G., Seilacher, A., 1982. Cyclic and event stratification. Springer Verlag : 536.
16 Aigner, T. 1982. Event-stratification in nummulite accumulations and in a shell beds from the Eocene of Egypt. In : EINSELE, G. & A. SEILACHER (eds). Cyclic and event stratification, 248-262.
17 Aigner, T. 1985. Storm depositional system. Dynamic stratigraphy in modern ancient shallow marine sequences. Lecture notes in Earth Sciences, 3, 1-174.
18 Donovan, S.K., 1991. The Processes of Fossilization. Belhaven Press, London, 303.
19 Brett, C.E., Baird, G.C., 1996. Middle Devonian sedimentary cycles and sequences in the northern Appalachian Basin. Geological Society of America, Special Paper, 306, 213- 241.
20 Powell, E.N., Staff, G.M., Davies, D.J., Callender, W.R. 1989. Macrobenthic death assemblages in modern marine environments : Formation, interpretation and application : Critical Reviews in Aquatic Sciences. 1, 555-589.
21 Aigner, T. 1984. Dynamic stratigraphy of epicontinental carbonates, Upper Muschelkalk (M. Triassic), South-German Basin. Neues Jahrbuch fur Geologie und Palaontologie Abhandlungen, 169, 127-159.
22 Weiss, I.M., Tuross, N., Addadi, L., Weiner, S., 2002. Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite. J Exp Zool, 293, 478-491.   DOI
23 Auzoux-Bordenave, S., Badou, A., Gaume, B., Berland, S., Helleouet, M.N., Milet, C., Huchette, S. 2010. Ultrastructure, chemistry and mineralogy of the growing shell of the European abalone Haliotis tuberculata. J Struct Biol, 171, 277-290.   DOI
24 Simkiss, K., Wilbur, K.M., 1989. Biomineralization, Cell biology and Mineral Deposition. Academic Press, Inc., New York.
25 Waller, T.R., 1980. Scanning electron microscopy of shell and mantle in the order Arcoida (Mollusca: Bivalvia). Smithson Contrib Zool, 313, 1-58.
26 Taylor, J.D., Kennedy, W.J., Hall, A., 1969. The shell structure and mineralogy of the Bivalvia. Introduction. Nuculacea- Trigonacea. Bull Brit Mus (Nat Hist) Zool Lond supplem. 3, 1-125.
27 Marin, F., Roy, N.L., Marie, B., 2012. The formation and mineralization of mollusk shell, Frontiers in Bioscience, S4, 1099-1125.   DOI
28 Chinzei, K., 1995. Adaptive significance of the lightweight shell structure in soft bottom oysters: Neues Jahrbuch fur Geologie und Palaontologie, Abhandlungen, v. 195, p. 217-227.
29 Higuera-Ruiz, R., Elorza, J., 2009. Biometric, microstructural, and high-resolution trace element studies in Crassostrea gigas of Cantabria (Bay of Biscay, Spain): anthropogenic and seasonal influences: Estuarine, Coastal and Shelf Science, v. 82, p. 201-213.   DOI
30 Blomeier, D.P.G., Reijmer, J.J.G., 1999, Drowning of a lower Jurassic carbonate platform: Jbel Bou Dahar, high Atlas, Morocco. Facies, 41, 81-110.   DOI
31 Badenas, B., Aurell, M., 2001. Proximal-distal facies relationships and sedimentary processes in a storm dominated carbonate ramp (Kimmeridgian, northwest of the Iberian Ranges, Spain). Sediment. Geol, 139, 319-340.   DOI
32 Pierre, A., Durlet, C., Razin, P., Chellai, E.H., 2010, Spatial and temporal distribution of zooids along a Jurassic carbonate ramp: Amellago outcrop transect, High-Atlas, Morocco. Geol. Soc. Lond. Spec. Publ, 329, 65-88.   DOI
33 Dera, G., Brigaud, B., Monna, F., Laffont, R., Puceat, E., Deconinck, J-F., Pellenard, P., Joachimski, M.M., Durlet, C., 2011, Climatic ups and downs in a disturbed Jurassic world. Geology 39, 215-218.   DOI
34 rigaud, B., Vincent, B., Carpentier, C., Robin, C., Guillocheau, F., Yven, B., Huret, E., 2014, Growth and demise of the Jurassic carbonate platform in the intracratonic Paris Basin (France): interplay of climate change, eustasy and tectonics. Mar. Petrol. Geol, 53, 3-29.   DOI
35 Andrieu, S., Brigaud, B., Barbarand, J., Lasseur, E., Saucede, T., 2016, Disentangling the control of tectonics, eustasy, trophic conditions and climate on shallow-marine carbonate production during the Aalenian-Oxfordian interval: from the western France platform to the western Tethyan domain. Sediment. Geol. 345, 54-84.   DOI
36 Kidwell, S.M., Brenchley, P.J., 1996. Evolution of the fossil record: thickness trends in marine skeletal accumulations and their implications. In: Jablonski, D., Erwin, D. & Lipps, J.H. (eds) Evolutionary Palaeobiology. University of Chicago Press, Chicago, IL, 290-336.
37 Macdonald, J., 2011. Microstructure, Crystallography and Stable Isotope Composition of Crassostrea gigas [PhD thesis]: University of Glasgow, U.K., 224 p.
38 Orton, J.H., Amirthalingam, C., 1927. Notes on shell-depositions in oysters: Marine Biological Association of the UK, Journal, v. 14, p. 935-953.   DOI
39 Galtsoff, P.S., 1964. "The American oyster Crassostrea virginica (Gmelin)," Fishery Bulletin, vol. 64, pp. 1-48.
40 Steuber, T., 2000. Skeletal growth rates of Upper Cretaceous rudist bivalve implications for carbonate production and organism-environment feedbacks. In: Insalaco, E., Skelton, P.W. & Palmer, T.J. (eds) Carbonate Platform Systems: Components and Interactions. Geological Society, London, Special Publications, 178, 21-32.
41 Loo, L.O., Rosenberg, R., 1983. Mytilus edulis culture: growth and production in western Sweden. Aquaculture, 35, 137-150.   DOI
42 Rais, P., Louis-Schmid, B., Bernasconi, S.M., Weissert, H., 2007. Palaeoceanographic and palaeoclimatic reorganization around the Middle- Late Jurassic transition. Palaeogeogr. Palaeoclimatol. Palaeoecol. 251, 527-546.   DOI
43 Azeredo, A.C., Wright, V.P., Ramalho, M.M., 2002. The Middle-Late Jurassic forced regression and disconformity in central Portugal: eustatic, tectonic and climatic effects on a carbonate ramp system. Sedimentology, 49, 1339-1370.   DOI
44 Dromart, G., Garcia, J.-P., Gaumet, F., Picard, S., Rousseau, M., Atrops, F., Lecuyer, C., Sheppard, S.M.F., 2003. Perturbation of the carbon cycle at the Middle/Late Jurassic transition: geological and geochemical evidence. Am. J. Sci. 303, 667-707.   DOI
45 Lecuyer, C., Picard, S., Garcia, J.-P., Sheppard, S.M.F., Grandjean, P., Dromart, G., 2003. Thermal evolution of Tethyan surface waters during the Middle-Late Jurassic: evidence from ${\delta}18O$ values of marine fish teeth. Paleoceanography, 18, 1076.
46 Pellenard, P., Tramoy, R., Puceat, E., Huret, E., Martinez, M., Bruneau, L., Thierry, J., 2014. Carbon cycle and sea-water palaeotemperature evolution at the Middle-Late Jurassic transition, eastern Paris Basin (France). Mar. Petrol. Geol. 53, 30-43.   DOI
47 Aurell, M., Bosence, D., Waltham, D., 1995. Carbonate ramp depositional systems from a late Jurassic epeiric platform (Iberian Basin, Spain): a combined computer modelling and outcrop analysis. Sedimentology 42, 75-94.   DOI
48 Norris, M.S., Hallam, A., 1995. Facies variations across the Middle-Upper Jurassic boundary in Western Europe and the relationship to sea-level changes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 116, 189-245.   DOI
49 Bosence, D., 1989. Biogenic carbonate production in Florida Bay. Bulletin of Marine Science, 44, 419-433.
50 Kirby, M.X., Soniat, T.M., Spero, H.J., 1998. Stable isotope sclerochronology of Pleistocene and recent oyster shells (Crassostrea virginica). Palaios, 13, 560-569.   DOI
51 Moore, H.B., 1972. Carbonate production on seaquarium flats. Marine Biology, 17, 120-132.
52 Harney, J.N., Fletcher, C.H., 2003. A budget of carbonate framework and sediment production, Kailua Bay, Hawaii. Journal of Sedimentary Research, 73, 856-868.   DOI
53 Leinfelder, R.R., Schmid, D.U., Nose, M., Werner, W., 2002. Jurassic Reef Patterns-the Expression of a Changing Globe.
54 Cecca, F., Martin Garin, B., Marchand, D., Lathuiliere, B., Bartolini, A., 2005. Paleoclimatic control of biogeographic and sedimentary events in Tethyan and peri-Tethyan areas during the Oxfordian (Late Jurassic). Palaeogeogr. Palaeoclimatol. Palaeoecol. 222, 10-32.   DOI
55 Collin, P.-Y., Courville, P., 2006. Sedimentation and palaeogeography of the eastern part of the Paris Basin (France) at the middle-upper Jurassic boundary. Compt. Rendus Geosci. 338, 824-833.   DOI
56 Strasser, A., Vedrine, S., Stienne, N., 2012. Rate and synchronicity of environmental changes on a shallow carbonate platform (Late Oxfordian, Swiss Jura Mountains). Sedimentology 59, 185-211.   DOI
57 Lathuiliere, B., Gaillard, C., Habrant, N., Bodeur, Y., Boullier, A., Enay, R., Hanzo, M., Marchand, D., Thierry, J., Werner, W., 2005. Coral zonation of an Oxfordian reef tract in the northern French Jura. Facies 50, 545-559.   DOI
58 Carpentier, C., Lathuiliere, B., Ferry, S., 2010. Sequential and climatic framework of the growth and demise of a carbonate platform: implications for the peritidal cycles (Late Jurassic, North-eastern France). Sedimentology 57, 985-1020.   DOI
59 Seilacher, A., 1984. Constructional morphology of bivalves : evolutionary pathways in primary versus secondary soft-bottom dwellers. Palaeontology, 27 : 207-237.
60 Richard, G., 1985. Richness of the great sessile bivalves in Takapoto Lagoon. In: Salvat, B. & Richard, G. (eds) Atol de Takapoto, Archipel des Tuamotu. Field Trip, 5th Congre's International, Recifs Corallines, Tahiti, Polynesie Francaise. International Association for Biological Oceanography, 1, 368-371.
61 Smith, S.V., 1972. Production of calcium carbonate on the mainland shelf of southern California. Limnology and Oceanography, 17, 28-41.   DOI
62 Beukema, J.J., 1980. Calcimass and carbonate production by molluscs on the tidal flats in the Dutch Wadden Sea: I. The tellinid bivalve Macoma balthica. Netherlands Journal of Sea Research, 14, 323-338.   DOI
63 Esteban, M., 1979. Significance of the Upper Miocene coral reefs of the Western Mediterranean: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 29, p. 169-188.   DOI
64 Martin, J.M., Braga, J.C., Rivas, P., 1989. Coral successions in Upper Tortonian reefs in SE Spain: Lethaia, v. 22, p. 271-286.   DOI
65 Riding, R., Martin, J.M., Braga, J.C., 1991. Coral stromatolite reef framework, Upper Miocene, Almeria, Spain: Sedimentology, v. 38, p. 799-818.   DOI
66 Mertz-Kraus, R., Brachert, T.C., Reuter, M., Galer, S.J.G., Fassoulas, C., Iliopoulos, G., 2009. Late Miocene sea surface salinity variability and paleoclimate conditions in the Eastern Mediterranean inferred from coral aragonite d18O: Chemical Geology, v. 262, p. 202-216.   DOI
67 Esteban, M., Braga, J.C., Martin, J., De-Santisteban, C., 1996. Western Mediterranean reef complexes, in Franseen, E.K., Esteban, M., Ward, W.C., and Rouchy, J.-M., eds., Models for Carbonate Stratigraphy from Miocene Reef Complexes of Mediterranean Regions: SEPM, Concepts in Sedimentology and Paleontology. 5, p. 55-72.
68 Pomar. L., Hallock, P., 2007. Changes in coral-reef structure through the Miocene in the Mediterranean province: adaptive versus environmental influence: Geology, v. 35, p. 899-902.   DOI
69 Bosellini, F.R., Perrin, C., 2008. Estimating Mediterranean Oligocene-Miocene seasurface temperatures: an approach based on coral taxonomic richness: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 258, p. 71-88.   DOI
70 Perrin, C., Bosellini, F.R., 2012. Paleobiology of scleractinian reef corals: changing patterns during the Oligocene-Miocene climatic transition in the Mediterranean: Earth- Science Reviews, v. 111, p. 1-24.   DOI
71 Hecker, R.F., (Gekker, R.F.), Osipova, A.I., Belskaya, T.N. (Belska, T.N.)., 1962. Fergana Gulf of Paleogene Sea of Central Asia, Its history, Sediments, Fauna and Flora, Their Environment and Evolution [in Russian]. Part2. 332pp. Izdatel'stvo Akademii Nauk SSSR, Moskva.
72 Hudson, J.D., Palmer, T.J., 1976. A euryhaline oyster from the middle Jurassic and the ongin of the true oysters. - Palaeontology 19, 79-93.
73 Flaff, C.D., 1976. Origin and significance of the oyster banks in the Walnut Clay Formation, central Texas. Baylor Geological Studies. 30,147.
74 Demarcq, H., Demarcq, G., 1999. Le biostrome d Crassostrea gasar (Bivalvia) de l'holocBne du Sine-Saloum (Sonogal); donnoes nouvelles et interprotationo co stratig raphique.- Geobios 25, 225-250.
75 Littlewood, T.J., Donovan, S.K., 1988. Variation of Recent and fossil Crassostrea in Jamaica. Palaeontology, 31, 1013-1028.
76 Kidwell, M., 1990. Phanerozoic evolution of macroinvenebrate shell accumulations: preliminary data from the Jurassic of Bntain. In: W. Miller, III (ed.), Paleocommun E Temporal Dynamics: The Long-term Development of Multispecies Assemblages. The Paleontological SocieE Special Publication, 5,309-317.
77 Jimenez, A.P., Braga, J.C., Martin, J.M., 1991. Oyster distribution in the upper Tortonian of the Almanzora Corridor (Almeria, S.E. Spain). Geobios 24,725-734.   DOI
78 Seilacher, A., 1985. Bivalve Morphology and Function. In: T.W. Broadhead (ed.), Mollusks, Notes for a Short Course. - UniversiE of Tennessee Studies in Geology 1.3' 88-101.
79 Seilacher, A., 1989. Oyster Beds; Biological and Taphonomic Response to Storm-Dominated Regimes. Abstracts, 28th Intemational Geological Congress, 70. Washington, D.C.
80 Fiirsich, F.T., Oschmann, W., 1986a. Storm shell beds of Nanogyravirgulain the upper Jurassic of France. Neues J ahrbuchfiir Geologie and Paltiontolo gie, Abhandlung en T 2, 141-161.
81 Fiirsich, F.T., Oschmann, W., 1986b. Autecology of the Upper Jurassic oyster Nanogyra virgula (Defrance). - Paliionto Io gis che Ze it s chrirt, 60, 65-74.
82 Seilacher, A., 1984. Constructional morphology of bivalves: evolutionary pathways in primary versus secondary soft-bottom dwellers. Palaeontology, 27, 207 -237.
83 Machalski, M., 1989. Life position of the oyster Deltoideum delta (Smith) from the Kimmeridgian of Poland, and its environmental significance. - Neues Jahrbuchfiir Geologie and Palciontologie, Monatshefte, 1, 603-614.