Browse > Article
http://dx.doi.org/10.5714/CL.2012.13.3.139

Fabrication and Cell Culturing on Carbon Nanofibers/Nanoparticles Reinforced Membranes for Bone-Tissue Regeneration  

Deng, Xu Liang (School and Hospital of Stomatology, Peking University)
Yang, Xiao Ping (The State Laboratory of Beijing City on Preparation and Processing of Novel Polymers, Department of Materials Science and Engineering, Beijing University of Chemical Technology)
Publication Information
Carbon letters / v.13, no.3, 2012 , pp. 139-150 More about this Journal
Abstract
Poly-L-lactic acid (PLLA), PLLA/hydroxyapatite (HA), PLLA/multiwalled carbon nanotubes (MWNTs)/HA, PLLA/trifluoroethanol (TFE), PLLA/gelatin, and carbon nanofibers (CNFs)/${\beta}$-tricalcium phosphate (${\beta}$-TCP) composite membranes (scaffolds) were fabricated by electrospinning and their morphologies, and mechanical properties were characterized for use in bone tissue regeneration/guided tissue regeneration. MWNTs and HA nanoparticles were well distributed in the membranes and the degradation characteristics were improved. PLLA/MWNTs/HA membranes enhanced the adhesion and proliferation of periodontal ligament cells (PDLCs) by 30% and inhibited the adhesion of gingival epithelial cells by 30%. Osteoblast-like MG-63 cells on the randomly fiber oriented PLLA/TEF membrane showed irregular forms, while the cells exhibited shuttle-like shapes on the parallel fiber oriented membrane. Classical supersaturated simulated body fluids were modified by $CO_2$ bubbling and applied to promote the biomineralization of the PLLA/gelatin membrane; this resulted in predictions of bone bonding bioactivity of the substrates. The ${\beta}$-TCP membranes exhibit good biocompatibility, have an effect on PDLC growth comparable to that of pure CNF membrane, and can be applied as scaffolds for bone tissue regeneration.
Keywords
composite membrane; scaffold; periodontal ligament cell; bone tissue regeneration; simulated body fluid; biocompatibility;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sequeira SJ, Soscia David A, Oztan B, Mosier Aaron P, Jean-Gilles R, Gadre A, Cady Nathaniel C, Yener B, Castracane J, Larsen M. The regulation of focal adhesion complex formation and salivary gland epithelial cell organization by nanofibrous PLGA scaffolds. Biomaterials, 33, 3175 (2012). http://dx.doi.org/10.1016/j.biomaterials. 2012.01.010.   DOI   ScienceOn
2 Jang JH, Castano O, Kim HW. Electrospun materials as potential platforms for bone tissue engineering. Adv Drug Del Rev, 61, 1065 (2009). http://dx.doi.org/10.1016/j.addr.2009.07.008.   DOI   ScienceOn
3 Beachley V, Wen X. Polymer nanofibrous structures: fabrication, biofunctionalization, and cell interactions. Prog Polym Sci, 35, 868 (2010). http://dx.doi.org/10.1016/j.progpolymsci.2010.03.003.   DOI   ScienceOn
4 Kim HW, Song JH, Kim HE. Nanofiber generation of gelatin-hydroxyapatite biomimetics for guided tissue regeneration. Adv Funct Mater, 15, 1988 (2005). http://dx.doi.org/10.1002/adfm.200500116.   DOI   ScienceOn
5 Hillmann G, Steinkamp-Zucht A, Geurtsen W, Gross G, Hoffmann A. Culture of primary human gingival fibroblasts on biodegradable membranes. Biomaterials, 23, 1461 (2002). http://dx.doi. org/10.1016/s0142-9612(01)00270-8.   DOI   ScienceOn
6 Owen GR, Jackson J, Chehroudi B, Burt H, Brunette DM. A PLGA membrane controlling cell behaviour for promoting tissue regeneration. Biomaterials, 26, 7447 (2005). http://dx.doi.org/10.1016/j. biomaterials.2005.05.055.   DOI   ScienceOn
7 Liao S, Wang W, Uo M, Ohkawa S, Akasaka T, Tamura K, Cui F, Watari F. A three-layered nano-carbonated hydroxyapatite/collagen/ PLGA composite membrane for guided tissue regeneration. Biomaterials, 26, 7564 (2005). http://dx.doi.org/10.1016/j.biomaterials. 2005.05.050.   DOI   ScienceOn
8 Song JH, Kim HE, Kim HW. Electrospun fibrous web of collagen- apatite precipitated nanocomposite for bone regeneration. J Mater Sci Mater Med, 19, 2925 (2008). http://dx.doi.org/10.1007/ s10856-008-3420-7.   DOI
9 Kim HW, Yu HS, Lee HH. Nanofibrous matrices of poly(lactic acid) and gelatin polymeric blends for the improvement of cellular responses. J Biomed Mater Res A, 87, 25 (2008). http://dx.doi. org/10.1002/jbm.a.31677.   DOI   ScienceOn
10 An K, Liu H, Guo S, Kumar DNT, Wang Q. Preparation of fish gelatin and fish gelatin/poly(l-lactide) nanofibers by electrospinning. Int J Biol Macromol, 47, 380 (2010). http://dx.doi.org/10.1016/j. ijbiomac.2010.06.002.   DOI   ScienceOn
11 Chong EJ, Phan TT, Lim IJ, Zhang YZ, Bay BH, Ramakrishna S, Lim CT. Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater, 3, 321 (2007). http://dx.doi.org/10.1016/j.actbio. 2007.01.002.   DOI   ScienceOn
12 Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani M-H, Ramakrishna S. Electrospun poly($\varepsilon$-caprolactone)/ gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials, 29, 4532 (2008). http://dx.doi.org/10.1016/j.biomaterials. 2008.08.007.   DOI   ScienceOn
13 Meng ZX, Wang YS, Ma C, Zheng W, Li L, Zheng YF. Electrospinning of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffold in tissue engineering. Mater Sci Eng C, 30, 1204 (2010). http://dx.doi.org/10.1016/j.msec.2010.06.018.   DOI   ScienceOn
14 Jose MV, Thomas V, Dean DR, Nyairo E. Fabrication and characterization of aligned nanofibrous PLGA/Collagen blends as bone tissue scaffolds. Polymer, 50, 3778 (2009). http://dx.doi. org/10.1016/j.polymer.2009.05.035.   DOI   ScienceOn
15 Lee TM, Yang CY, Chang E, Tsai RS. Comparison of plasmasprayed hydroxyapatite coatings and zirconia-reinforced hydroxyapatite composite coatings: in vivo study. J Biomed Mater Res A, 71, 652 (2004). http://dx.doi.org/10.1002/jbm.a.30190.   DOI
16 Auclair-Daigle C, Bureau MN, Legoux JG, Yahia LH. Bioactive hydroxyapatite coatings on polymer composites for orthopedic implants. J Biomed Mater Res A, 73, 398 (2005). http://dx.doi. org/10.1002/jbm.a.30284.   DOI   ScienceOn
17 Kikuchi M, Suetsugu Y, Tanaka J, Akao M. Preparation and mechanical properties of calcium phosphate/copoly-L-lactide composites. J Mater Sci Mater Med, 8, 361 (1997). http://dx.doi. org/10.1023/a:1018580816388.   DOI   ScienceOn
18 Gomez-Vega JM, Saiz E, Tomsia AP, Marshall GW, Marshall SJ. Bioactive glass coatings with hydroxyapatite and $Bioglass^{(R)}$ particles on Ti-based implants. 1. Processing. Biomaterials, 21, 105 (2000). http://dx.doi.org/10.1016/s0142-9612(99)00131-3.   DOI   ScienceOn
19 LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res, 81 (2002).
20 Liu Q, Wijn JR, Bakker D, Blitterswijk CA. Surface modification of hydroxyapatite to introduce interfacial bonding with polyactiveTM 70/30 in a biodegradable composite. J Mater Sci Mater Med, 7, 551 (1996). http://dx.doi.org/10.1007/bf00122178.   DOI
21 Rho JY, Kuhn-Spearing L, Zioupos P. Mechanical properties and the hierarchical structure of bone. Med Eng Phys, 20, 92 (1998). http://dx.doi.org/10.1016/s1350-4533(98)00007-1.   DOI   ScienceOn
22 Du C, Cui FZ, Zhu XD, de Groot K. Three-dimensional nano-HAp/ collagen matrix loading with osteogenic cells in organ culture. J Biomed Mater Res, 44, 407 (1999). http://dx.doi.org/10.1002/ (sici)1097-4636(19990315)44:4<407::aid-jbm6>3.0.co;2-t.   DOI
23 Du C, Cui FZ, Feng QL, Zhu XD, de Groot K. Tissue response to nano-hydroxyapatite/collagen composite implants in marrow cavity. J Biomed Mater Res, 42, 540 (1998). http://dx.doi.org/10.1002/ (sici)1097-4636(19981215)42:4<540::aid-jbm9>3.0.co;2-2.   DOI
24 Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res, 51, 475 (2000). http:// dx.doi.org/10.1002/1097-4636(20000905)51:3<475::aidjbm23> 3.0.co;2-9.   DOI
25 Kasuga T, Maeda H, Kato K, Nogami M, Hata K, Ueda M. Preparation of poly(lactic acid) composites containing calcium carbonate (vaterite). Biomaterials, 24, 3247 (2003). http://dx.doi. org/10.1016/s0142-9612(03)00190-x.   DOI   ScienceOn
26 Ueyama Y, Ishikawa K, Mano T, Koyama T, Nagatsuka H, Suzuki K, Ryoke K. Usefulness as guided bone regeneration membrane of the alginate membrane. Biomaterials, 23, 2027 (2002). http:// dx.doi.org/10.1016/s0142-9612(01)00332-5.   DOI   ScienceOn
27 Kikuchi M, Koyama Y, Takakuda K, Miyairi H, Shirahama N, Tanaka J. In vitro change in mechanical strength of $\beta$-tricalcium phosphate/copolymerized poly-L-lactide composites and their application for guided bone regeneration. J Biomed Mater Res, 62, 265 (2002). http://dx.doi.org/10.1002/jbm.10248.   DOI   ScienceOn
28 Chen F, Wang ZC, Lin CJ. Preparation and characterization of nano-sized hydroxyapatite particles and hydroxyapatite/chitosan nano-composite for use in biomedical materials. Mater Lett, 57, 858 (2002). http://dx.doi.org/10.1016/s0167-577x(02)00885-6.   DOI   ScienceOn
29 Deng X, Hao J, Wang C. Preparation and mechanical properties of nanocomposites of poly(d,l-lactide) with Ca-deficient hydroxyapatite nanocrystals. Biomaterials, 22, 2867 (2001). http://dx.doi. org/10.1016/s0142-9612(01)00031-x.   DOI   ScienceOn
30 Kim HW, Kim HE, Salih V. Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds. Biomaterials, 26, 5221 (2005). http://dx.doi. org/10.1016/j.biomaterials.2005.01.047.   DOI   ScienceOn
31 Yamauchi K, Goda T, Takeuchi N, Einaga H, Tanabe T. Preparation of collagen/calcium phosphate multilayer sheet using enzymatic mineralization. Biomaterials, 25, 5481 (2004). http://dx.doi. org/10.1016/j.biomaterials.2003.12.057.   DOI   ScienceOn
32 Formhals A. US Patent No. 1 975 504 (1934).
33 Cai Q, Xu Q, Feng Q, Cao X, Yang X, Deng X. Biomineralization of electrospun poly(L-lactic acid)/gelatin composite fibrous scaffold by using a supersaturated simulated body fluid with continuous $CO_{2}$ bubbling. Appl Surf Sci, 257, 10109 (2011). http://dx.doi. org/10.1016/j.apsusc.2011.06.157.   DOI   ScienceOn
34 Matthews JA, Wnek GE, Simpson DG, Bowlin GL. Electrospinning of collagen nanofibers. Biomacromolecules, 3, 232 (2002). http://dx.doi.org/10.1021/bm015533u.   DOI   ScienceOn
35 Xu CY, Inai R, Kotaki M, Ramakrishna S. Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials, 25, 877 (2004). http://dx.doi.org/10.1016/ s0142-9612(03)00593-3.   DOI   ScienceOn
36 Mei F, Zhong J, Yang X, Ouyang X, Zhang S, Hu X, Ma Q, Lu J, Ryu S, Deng X. Improved biological characteristics of poly(Llactic acid) electrospun membrane by incorporation of multiwalled carbon nanotubes/hydroxyapatite nanoparticles. Biomacromolecules, 8, 3729 (2007). http://dx.doi.org/10.1021/bm7006295.   DOI   ScienceOn
37 Shi X, Hudson JL, Spicer PP, Tour JM, Krishnamoorti R, Mikos AG. Injectable nanocomposites of single-walled carbon nanotubes and biodegradable polymers for bone tissue engineering. Biomacromolecules, 7, 2237 (2006). http://dx.doi.org/10.1021/ bm060391v.   DOI   ScienceOn
38 Bhattacharyya S, Guillot S, Dabboue H, Tranchant JF, Salvetat JP. Carbon nanotubes as structural nanofibers for hyaluronic acid hydrogel scaffolds. Biomacromolecules, 9, 505 (2008). http://dx.doi. org/10.1021/bm7009976.   DOI   ScienceOn
39 Ogose A, Hotta T, Kawashima H, Kondo N, Gu W, Kamura T, Endo N. Comparison of hydroxyapatite and beta tricalcium phosphate as bone substitutes after excision of bone tumors. J Biomed Mater Res B, 72, 94 (2005). http://dx.doi.org/10.1002/jbm.b.30136.   DOI   ScienceOn
40 Liu H, Cai Q, Lian P, Fang Z, Duan S, Ryu S, Yang X, Deng X. The biological properties of carbon nanofibers decorated with $\beta$-tricalcium phosphate nanoparticles. Carbon, 48, 2266 (2010). http://dx.doi.org/10.1016/j.carbon.2010.02.042.   DOI   ScienceOn
41 Kim H-W, Yu H-S, Lee H-H. Nanofibrous matrices of poly(lactic acid) and gelatin polymeric blends for the improvement of cellular responses. J J Biomed Mater Res A, 87, 25 (2008). http://dx.doi.org/10.1002/jbm.a.31677.   DOI   ScienceOn
42 Murphy WL, Kohn DH, Mooney DJ. Growth of continuous bonelike mineral within porous poly(lactide-co-glycolide) scaffolds in vitro. J Biomed Mater Res, 50, 50 (2000). http://dx.doi.org/10.1002/(sici)1097-4636(200004)50:1<50::aid-jbm8>3.0.co;2-f.   DOI
43 Madurantakam PA, Rodriguez IA, Cost CP, Viswanathan R, Simpson DG, Beckman MJ, Moon PC, Bowlin GL. Multiple factor interactions in biomimetic mineralization of electrospun scaffolds. Biomaterials, 30, 5456 (2009). http://dx.doi.org/10.1016/j.biomaterials. 2009.06.043.   DOI   ScienceOn
44 Wang B, Cai Q, Zhang S, Yang X, Deng X. The effect of poly (L-lactic acid) nanofiber orientation on osteogenic responses of human osteoblast-like MG63 cells. J Mech Behav Biomed Mater, 4, 600 (2011). http://dx.doi.org/10.1016/j.jmbbm.2011.01.008.   DOI   ScienceOn
45 Sui G, Yang X, Mei F, Hu X, Chen G, Deng X, Ryu S. Poly-Llactic acid/hydroxyapatite hybrid membrane for bone tissue regeneration. J Biomed Mater Res A, 82, 445 (2007). http://dx.doi.org/10.1002/jbm.a.31166.   DOI   ScienceOn
46 Wataha JC, Craig RG, Hanks CT. Precision of and new methods for testing in vitro alloy cytotoxicity. Dent Mater, 8, 65 (1992). http:// dx.doi.org/10.1016/0109-5641(92)90056-i.   DOI   ScienceOn
47 Wang HL, Miyauchi M, Takata T. Initial attachment of osteoblasts to various guided bone regeneration membranes: an in vitro study. J Periodont Res, 37, 340 (2002). http://dx.doi.org/10.1034/j.1600- 0765.2002.01625.x.   DOI   ScienceOn
48 Zhang R, Ma PX. Poly($\alpha$-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. J Biomed Mater Res, 44, 446 (1999). http:// dx.doi.org/10.1002/(sici)1097-4636(19990315)44:4<446::aidjbm11> 3.0.co;2-f.   DOI   ScienceOn
49 Wutticharoenmongkol P, Pavasant P, Supaphol P. Osteoblastic phenotype expression of MC3T3-E1 cultured on electrospun polycaprolactone fiber mats filled with hydroxyapatite nanoparticles. Biomacromolecules, 8, 2602 (2007). http://dx.doi.org/10.1021/ bm700451p.   DOI   ScienceOn
50 Chen M, Patra PK, Warner SB, Bhowmick S. Role of fiber diameter in adhesion and proliferation of NIH 3T3 fibroblast on electrospun polycaprolactone scaffolds. Tissue Eng, 13, 579 (2007). http://dx.doi.org/10.1089/ten.2006.0205.   DOI   ScienceOn
51 Isikli C, Hasirci V, Hasirci N. Development of porous chitosan- gelatin/hydroxyapatite composite scaffolds for hard tissue-engineering applications. J Tissue Eng Regener Med, 6, 135 (2012). http://dx.doi.org/10.1002/term.406.   DOI   ScienceOn
52 Ko YH, Seo DS, Lee JK. Biological behavior of MG63 cells on the hydroxyapatite surface. Bioceram Develop Appl, 1, D101126 (2011). http://dx.doi.org/10.4303/bda/D101126.   DOI