• 제목/요약/키워드: Biomedical polymer

검색결과 318건 처리시간 0.02초

다공성 폴리(ε-카프로락톤)/실리카 복합체의 제조 및 특성평가 (Synthesis and Characterization of Porous Poly(ε-caprolactone)/Silica Nanocomposites)

  • 손시원;최지은;조훈;강대준;이득용;김진태;장주웅
    • 폴리머
    • /
    • 제39권2호
    • /
    • pp.323-328
    • /
    • 2015
  • 졸-젤법을 이용한 전기방사법과 캐스팅법으로 폴리(${\varepsilon}$-카프로락톤)(PCL) 나노섬유와 PCL/실리카 막을 각각 제조하였다. 용매에 N,N-dimethylformamide(DMF)를 혼합한 경우 부드럽고 연속적인 PCL 나노섬유가 제조되었다. PCL 기지상에 tetraethyl orthosilicate(TEOS) 농도가 0에서 40 vol%로 증가함에 따라 PCL/silica의 강도는 12에서 8MPa로 감소하였지만, 7주까지 phosphate buffered saline solution(PBS) 침지에 따른 강도값의 변화는 없었다. 실리카 첨가에 따른 인장강도의 감소는 기공도의 증가에 기인하였다. PCL/실리카 막의 결정구조는 사방정계로 실리카 농도가 0에서 40 vol%로 증가함에 따라 crystallite 크기는 57에서 18 nm로 감소하였다. 세포독성 실험결과, PCL/실리카는 시편의 수축 및 변형이 없고, 검체 주위에서 변색이나 L-929 세포의 이상이 관찰되지 않는 무독성이었다.

조직 확장기용 생분해성 하이드로젤의 제조 및 특성분석 (Preparation and Characterization of Biodegradable Hydrogels for Tissue Expander Application)

  • 육군영;김예태;임수진;;;박기남;박정숙;허강무
    • 폴리머
    • /
    • 제34권3호
    • /
    • pp.253-260
    • /
    • 2010
  • 본 연구에서는 조직확장 응용을 위한 생체적합성 생분해성 하이드로젤을 제조하고, 그 기본특성을 분석하였다. 친수성 고분자인 poly(ethylene glycol)의 양 말단에 다양한 몰비의 D,L-lactide와 glycolide를 개환 중합시켜 PLGA-PEG-PLGA 삼중공중합체를 합성한 뒤 비닐기를 도입하여 하이드로젤 제조 시 swelling/degradation controllers(SDC)로 사용하였다. 합성한 SDC와 PEG diacrylate를 사용하여 라디칼 중합으로 제조한 하이드로젤은 건조된 상태에서도 유연하고 탄성을 보였으며 분해테스트에서는 SDC의 조성과 SDC/PEG의 몰비에 따라 다양한 팽윤지연시간과 분해기간을 갖는 것으로 나타났다. 그 밖에 기계적 물성과 팽윤압력을 측정하였고, 이식시험을 통해 이식용 하이드로젤을 사용목적에 맞게 이식하거나 삽입하였을 때의 생체 조직의 국소적인 병리적 양상을 육안관찰과 현미경적 관찰을 통하여 평가하였다.

다양한 생체고분자로 코팅된 Paclitaxel Eluting Stent의 약물함량과 세포독성 연구 (A Study of Drug Content and Cell Cytotoxicity of Paclitaxel-eluting Stents Coated with Various Biopolymer)

  • 김동곤;신일균;김한기;김성현;이주호;기병윤;나재운;서태석;김상호
    • 한국의학물리학회지:의학물리
    • /
    • 제20권3호
    • /
    • pp.125-131
    • /
    • 2009
  • 본 연구는 소화기영역에서의 재협착을 방지하기 위하여 인간의 혈관 평활근 세포의 증식과 이동을 억제하며 신생내막의 형성을 억제하는 특성을 갖는 파클리탁셀(paclitaxel)을 스텐트 표면에 PVAc, PLGA, Silicone rubber 등 다양한 생체고분자로 코팅하여 paclitaxel eluting stent (PES)을 제조하고 그 특성을 분석하였다. 제조된 PES는 코팅용액의 농도가 증가할수록 그리고 코팅고분자의 분자량이 증가할수록 약물함량은 증가 되었고, bare 스텐트보다 커버드(covered) 스텐트의 표면적이 넓기 때문에 약물함량이 약 3배 정도 많음을 알 수 있었다. $^1H-NMR$ 결과에서 스텐트 표면에 파클리탁셀의 코팅과 약물의 변형이 없었음을 알 수 있었고, Silicone rubber을 제외한 다른 생체고분자는 스텐트 표면에 약물이 고르게 코팅되었음을 SEM image로부터 알 수 있었다. 그리고 in vitro에서 PES의 항암활성은 생분해성 고분자이고 분자량이 작은 PLGA 502H가 가장 높게 나타났으며, 분자량이 높을수록 낮은 항암활성을 나타냈다. 이상의 결과로부터 코팅고분자의 종류, 분자량 그리고 코팅용액의 농도를 변화시켜 약물함량을 증가시키고 약물방출을 조절할 수 있는 PES를 성공적으로 제조하였다.

  • PDF

All-trans Retinoic Acid-Associated Low Molecular Weight Water-Soluble Chitosan N anoparticles Based on Ion Complex

  • Kim Dong-Gon;Choi Changyong;Jeong Young-Il;Jang Mi-Kyeong;Nah Jae-Woon;Kang Seong-Koo;Bang Moon-Soo
    • Macromolecular Research
    • /
    • 제14권1호
    • /
    • pp.66-72
    • /
    • 2006
  • The purpose of this study is to develop novel nanoparticles based on polyion complex formation between low molecular weight water-soluble chitosan (LMWSC) and all-trans retinoic acid (atRA). LMWSC nanoparticles encapsulating atRA based on polyion complex were prepared by mixing of atRA into LMWSC aqueous solution using ultrasonication. In FTIR spectra, the carbonyl group of atRA at 1690 $cm^{-1}$ disappeared or decreased when ion complexes were formed between LMWSC and atRA. In ${1}^H$ NMR spectra, specific peaks of atRA disappeared when atRA-encapsulated LMWSC (RAC) nanoparticles were reconstituted into $D_{2}O$ while specific peaks both of atRA and LMWSC appeared in $D_{2}O$/DMSO (1/3, v/v) mixture. XRD patterns also showed that the crystal peaks of atRA were disappeared by encapsulation into LMWSC nanoparticles. LMWSC nanoparticles encapsulating atRA have spherical shapes with particle size below 200 nm. The mechanism of encapsulation of atRA into LMWSC nanoparticles was thought to be an ion complex formation between LMWSC and atRA. LMWSC nanoparticles showed high atRA loading efficiency over 90$\%$ (w/w). AtRA was continuously released from nanoparticles over 10 days. In in vitro cell cytotoxicity test, free atRA showed higher cytotoxic effect against CT 26 colon carcinoma cell line on 1 day. However, RAC nanoparticles showed similar cytotoxicity against CT 26 cells on 2 day. These results suggest the potential for the introduction of LMWSC nanoparticles into various biomedical fields such as drug delivery.

Effect of Poly(3-hydroxibutyrate-co-3-hydroxivalerate) Surface with Different Wettability on Fibroblast Behavior

  • Lee, Sang-Jin;Lee, Young-Moo;Khang, Gilson;Kim, Un-Young;Lee, Bong;Lee, Hai-Bang
    • Macromolecular Research
    • /
    • 제10권3호
    • /
    • pp.150-157
    • /
    • 2002
  • Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a microbial storage polymer with biodegradable properties. In order to improve the cell compatibility of PHBV surfaces, the physicochemical treatments have been demonstrated. In this study, physical method was corona discharge treatment and chemical method was chloric acid mixture solution treatment. The physicochemically treated PHBV film surfaces were characterized by the measurement of water contact angle, electron spectroscopy for chemical analysis, and scanning electron microscopy (SEM). The water contact angle of the physicochemically treated PHBV surfaces decreased from 75 to 30~40 degree, increased hydrophilicity. due to the introduction of oxygen-based functional group onto the PHBV backbone chain. The mouse NIH/3T3 fibroblasts cultured onto the physicochemically treated PHBV film surfaces with different wettability. The effect of the PHBV surface with different wettability was determined by SEM as counts of cell number and [$^3$H]thymidine incorporation as measures of cell proliferation. As the surface wettability increased, the number of the cell adhered and proliferated on the surface was increased. The result seems closely related with the serum protein adsorption on the physicochemically treated PHBV surface. In conclusion, this study demonstrated that the surface wettabilily of biodegradable polymer as the PHBV plays an important role for cell adhesion and proliferation behavior for biomedical application.

Temperature-responsive bioactive hydrogels based on a multifunctional recombinant elastin-like polymer

  • Santo, Vitor E.;Prieto, Susana;Testera, Ana M.;Arias, Francisco J.;Alonso, Matilde;Mano, Joao F.;Rodriguez-Cabello, Jose Carlos
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제2권1호
    • /
    • pp.47-59
    • /
    • 2015
  • A bioactive and multifunctional elastin-like polymer (ELP) was produced by genetic engineering techniques to develop new artificial matrices with the ability to mimic the extracellular matrix (ECM). The basic composition of this ELP is a thermo- and pH-sensitive elastin pentapeptide which has been enriched with RGD-containing domains, the RGD loop of fibronectin, for recognition by integrin receptors on their sequence to promote efficient cell attachment. Hydrogels of this RGD-containing polymer were obtained by crosslinking with hexamethylene diisocyanate, a lysine-targeted crosslinker. These materials retain the "smart" nature and temperature-responsive character, and the desired mechanical behavior of the elastin-like polymer family. The influence of the degree of crosslinking on the morphology and properties of the matrices were tested by calorimetric techniques and scanning electron microscopy (SEM). Their mechanical behavior was studied by dynamical mechanical analysis (DMA). These results show the potential of these materials in biomedical applications, especially in the development of smart systems for tissue engineering.

Fabrication and characterization of PCL/TCP-coated PHBV composite multilayer as a bone plate

  • Kim, Yang-Hee;Song, Ho-Yeon;Lee, Byong-Taek
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 추계학술발표대회
    • /
    • pp.39.2-39.2
    • /
    • 2009
  • In this work, Poly($\varepsilon$-Caprolactone)(PCL) andpoly(3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV) mats were fabricated usingelectrospinning process. The electrospinning process is a simple and efficient method to fabricate the nanofibrous mats. PCL and PHBV is a kind of biodegradable polymer but their mechanical properties aren't good. For improving mechanical properties, PHBV mats were coated by TCP. Using PCL mats and TCP-coated PHBV composite mats, a bio-resorbablebone plate were made by pressing. Detailed micro-structural characterization was done by SEM techniques. Tensile strength and bending strength were also evaluated for mechanical properties. The cytotoxicity evaluation ofPCL/TCP-coated PHBV composite multilayer was done by MTT assay. The evidence obtained in this work implies the potential for use as a biodegradable boneplate.

  • PDF

Paclitaxel Stimulates Cyclooxygenase-2 Expression via MAP Kinase Pathway in Rabbit Articular Chondrocytes

  • ;김송자
    • 대한의생명과학회지
    • /
    • 제15권2호
    • /
    • pp.141-146
    • /
    • 2009
  • Paclitaxel, an antimicrotubule agent, binds to beta-tubulin in the microtubule and stabilizes the polymer, thereby repressing dynamic instability. Here, we have demonstrated that microtubule cytoskeletal architecture involved in regulation of the COX-2 expression in chondrocyte treated with paclitaxel. Paclitaxel enhanced COX-2 expression and prostaglandin E2 production, as indicated by the Western blot analysis, reverse transcriptase PCR(RT-PCR) and immunofluorescence staining, and $PGE_2$ assay, respectively. In our previous data have shown that paclitaxel treatment stimulated activation of ERK-1/2 and p38 kinase(Im et al., 2009). SB203580, an inhibitor of p38 kinase, blocked the induction of COX-2 expression by paclitaxel. Also PD98059, an inhibitor of ERK-1/2 kinase was blocked the induced COX-2 expression. These results indicate that activation of ERK-1/2 and p38 kinase is required for COX-2 expression induced by paclitaxel in rabbit articular chondrocytes.

  • PDF

Construction of a Cell-Adhesive Nanofiber Substratum by Incorporating a Small Molecule

  • Jung, Dongju
    • 대한의생명과학회지
    • /
    • 제19권1호
    • /
    • pp.25-31
    • /
    • 2013
  • Electrospun nanofibers are being widely used as a substratum for mammalian cell culture owing to their structural similarity to collagen fibers found in extracellular matrices of mammalian cells and tissues. Especially, development of diverse synthetic polymers has expanded use of electrospun nanofibers for constructing cell culture substrata. Synthetic polymers have several benefits comparing to natural polymer for their structural consistency, low cost, and capability for blending with other polymers or small molecules to enhance their structural integrity or add biological functions. PMGI (polymethylglutarimide) is one of the synthetic polymers that produced a rigid nanofiber that enables incorporation of small molecules, peptides, and gold nanoparticles through co-electrospinning process, during which the materials are fixed without any chemical modifications in the PMGI nanofibers by maintaining their activities. Using the phenomenon of PMGI nanofiber, here I introduce a construction method of a nanofiber substratum having cell-affinity function towards a pluripotent stem cell by incorporating a small molecule in the PMGI nanofiber.

Antimicrobial Hydrogel Contact Lens Containing Alginate

  • Lee, Hyun-Mee;Kim, Jong-Ki;Cho, Tae-Sub
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권12호
    • /
    • pp.4239-4243
    • /
    • 2011
  • Biocompatible hydrogels from 2-hydroxyethyl methacrylate (HEMA) monomer containing various amount of alginate in the presence and absence of hydrophilic methacrylic acid (MAA) were synthesized in order for biomedical application. The antimicrobial effect and interaction with proteins for hydrogels were investigated in this study. MAA was introduced because it was expected to increase the amount of water content in the polymer which is an important factor for biocompatibility, and alginate was expected to enhance the antimicrobial activity. The antimicrobial effect against S. aureus and E. coli increased for all hydrogels as the amount of alginate and MAA contained. Presence of MAA further enhances the antimicrobial effect. Amount of adsorption of bovine serum albumin (BSA) increased with increasing concentration of alginate whether MAA was present or not. Contrarily, the amount of lysozyme was not affected with increasing alginate concentration in the absence of MAA, while it decreased in the presence of MAA.