Browse > Article
http://dx.doi.org/10.12989/bme.2015.2.1.047

Temperature-responsive bioactive hydrogels based on a multifunctional recombinant elastin-like polymer  

Santo, Vitor E. (G.I.R. Bioforge, Centro I+D, Campus Miguel Delibes, University of Valladolid)
Prieto, Susana (G.I.R. Bioforge, Centro I+D, Campus Miguel Delibes, University of Valladolid)
Testera, Ana M. (G.I.R. Bioforge, Centro I+D, Campus Miguel Delibes, University of Valladolid)
Arias, Francisco J. (G.I.R. Bioforge, Centro I+D, Campus Miguel Delibes, University of Valladolid)
Alonso, Matilde (G.I.R. Bioforge, Centro I+D, Campus Miguel Delibes, University of Valladolid)
Mano, Joao F. (3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Dept. of Polymer Engineering, University of Minho)
Rodriguez-Cabello, Jose Carlos (G.I.R. Bioforge, Centro I+D, Campus Miguel Delibes, University of Valladolid)
Publication Information
Biomaterials and Biomechanics in Bioengineering / v.2, no.1, 2015 , pp. 47-59 More about this Journal
Abstract
A bioactive and multifunctional elastin-like polymer (ELP) was produced by genetic engineering techniques to develop new artificial matrices with the ability to mimic the extracellular matrix (ECM). The basic composition of this ELP is a thermo- and pH-sensitive elastin pentapeptide which has been enriched with RGD-containing domains, the RGD loop of fibronectin, for recognition by integrin receptors on their sequence to promote efficient cell attachment. Hydrogels of this RGD-containing polymer were obtained by crosslinking with hexamethylene diisocyanate, a lysine-targeted crosslinker. These materials retain the "smart" nature and temperature-responsive character, and the desired mechanical behavior of the elastin-like polymer family. The influence of the degree of crosslinking on the morphology and properties of the matrices were tested by calorimetric techniques and scanning electron microscopy (SEM). Their mechanical behavior was studied by dynamical mechanical analysis (DMA). These results show the potential of these materials in biomedical applications, especially in the development of smart systems for tissue engineering.
Keywords
Elastin-like polymer; RGD; smart biomaterials; hydrogels; tissue engineering;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Richman, G.P., Tirrell, D.A. and Asthagiri, A.R. (2005), "Quantitatively distinct requirements for signaling-competent cell spreading on engineered versus natural adhesion ligands", J. Control. Release, 101(1), 3-12.   DOI   ScienceOn
2 Rodriguez-Cabello, J.C., Reguera, J., Girotti, A., Alonso, M. and Testera, A.M. (2005), "Developing functionality in elastin-like polymers by increasing their molecular complexity: the power of the genetic engineering approach", Pro. Polym. Sci., 30(11), 1119-1145.   DOI   ScienceOn
3 Rodriguez-Cabello, J.C., Reguera, J., Girotti, A., Arias, F.J. and Alonso, M. (2006), "Genetic engineering of protein-based polymers: the example of elastinlike polymers", Adv. Polym. Sci., 200, 119-167.
4 Sarangthem, V., Cho, E.A., Bae, S.M., Singh, T.D., Kim, S.J., Kim, S. and Park, R.W. (2013), "Construction and application of elastin like polypeptide containing IL-4 receptor targeting peptide", PloS one, 8(12), e81891.   DOI   ScienceOn
5 Trabbic-Carlson, K., Setton, L.A. and Chilkoti, A. (2003), "Swelling and mechanical behaviors of chemically cross-linked hydrogels of elastin-like polypeptides", Biomacromolecules, 4(3), 572-580.   DOI   ScienceOn
6 Urry, D.W. (1993), "Molecular machines-how motion and other functions of living organisms can result from reversible chemical-changes", Angewandte Chemi, 6(32), 819-841.
7 Urry, D.W. (2006), What sustains life? Consilient mechanisms for protein-based machines and materials, Springer-Verlag, New York, USA.
8 Urry, D.W., Nicol, A., Gowda, D.C., Hoban, L.D., McKee, A., Williams, T. and Cox, B.A. (1993), "Medical applications of bioelastic materials", Biotechnological polymers: medical, pharmaceutical and industrial applications, Technomic, Atlanta.
9 Anderson, D.G., Burdick, J.A. and Langer, R. (2004), "Smart biomaterials", Science, 305(5692), 1923-1924.   DOI   ScienceOn
10 Antoni, G., Presentini, R. and Neri, P. (1983), "A simple method for the estimation of amino groups on insoluble matrix beads", Anal. biochem., 129(1), 60-63.   DOI   ScienceOn
11 Costa, R.R., Castro, E., Arias, F.J., Rodriguez-Cabello, J.C. and Mano, J.F. (2013), "Multifunctional compartmentalized capsules with a hierarchical organization from the nano to the macro scales", Biomacromolecules, 14(7), 2403-2410.   DOI   ScienceOn
12 Costa, R.R., Custodio, C.A., Testera, A.M., Arias, F.J., Rodriguez-Cabello, J.C., Alves, N.M. and Mano, J.F. (2009), "Stimuli-responsive thin coatings using elastin-like polymers for biomedical applications", Adv. Function. Mater., 19(20), 3210-3218.   DOI   ScienceOn
13 Diego, R.B., Estelles, J.M., Sanz, J.A., Garcia-Aznar, J.M. and Sanchez, M.S. (2007), "Polymer scaffolds with interconnected spherical pores and controlled architecture for tissue engineering: fabrication, mechanical properties, and finite element modeling", J. Biomed. Mater. Res. Part B: Appl. Biomater., 81(2), 448-455.
14 Espirito Santo, V., Prieto, S., Testera, A.M., Alonso, M., Arias, F.J., Mano, J.F. and Rodriguez-Cabello, J.C. (2008), "Physical properties of an artificial extracellular matrix based on a crosslinked elastin-like polymer", Mater. Sci. Forum, 587, 47-51.
15 Heilshorn, S.C., Liu, J.C. and Tirrell, D.A. (2005), "Cell-binding domain context affects cell behavior on engineered proteins", Biomacromolecules, 6(1), 318-323.   DOI   ScienceOn
16 Everaerts, F., Torrianni, M., Hendriks, M. and Feijen, J. (2007), "Quantification of carboxyl groups in carbodiimide cross-linked collagen sponges", J. Biomed. Mater. Res. Part A, 83(4), 1176-1183.
17 Girotti, A., Reguera, J., Rodriguez-Cabello, J.C., Arias, F.J., Alonso, M. and Testera, A.M. (2004), "Design and bioproduction of a recombinant multi (bio) functional elastin-like protein polymer containing cell adhesion sequences for tissue engineering purposes", J. Mater. Sci.: Mater. Med., 15(4), 479-484.   DOI
18 Guda, C., Zhang, X., McPherson, D.T., Xu, J., Cherry, J.H., Urry, D.W. and Daniell, H. (1995), "Hyper expression of an environmentally friendly synthetic polymer gene", Biotech. Lett., 17(7), 745-750.   DOI
19 Kinikoglu, B., Rodriguez-Cabello, J.C., Damour, O. and Hasirci, V. (2011), "A smart bilayer scaffold of elastin-like recombinamer and collagen for soft tissue engineering", J. Mater. Sci.: Mater. Med., 22(6), 1541-1554.   DOI
20 Langer, R. and Tirrell, D.A. (2004), "Designing materials for biology and medicine", Nature, 428(6982), 487-492.   DOI   ScienceOn
21 Lee, J., Macosko, C.W. and Urry, D.W. (2001), "Elastomeric polypentapeptides cross-linked into matrixes and fibers", Biomacromolecules, 2(1), 170-179.   DOI   ScienceOn
22 Lee, J., Macosko, C.W. and Urry, D.W. (2001), "Mechanical properties of cross-linked synthetic elastomeric polypentapeptides", Macromolecules, 34(17), 5968-5974.   DOI   ScienceOn
23 Lee, J., Macosko, C.W. and Urry, D.W. (2001), "Swelling behavior of gamma-irradiation cross-linked elastomeric polypentapeptide-based hydrogels", Macromolecules, 12(34), 4114-4123.
24 Lutolf, M.P. and Hubbell, J.A. (2005), "Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering", Nat. Biotech., 23(1), 47-55.   DOI   ScienceOn
25 Lee, T.A.T., Cooper, A.A.R.P., Apkarian, R.P. and Conticello, V.P. (2000), "Thermo-reversible self-assembly of nanoparticles derived from elastin-mimetic polypeptides", Adv. Mater., 12(15), 1105-1110.   DOI
26 Lee, T.T., Garcia, J.R., Paez, J.I., Singh, A., Phelps, E.A., Weis, S. and Garcia, A.J. (2014), "Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials", Nature Mater., 14, 352-360.   DOI   ScienceOn
27 Liu, J.C., Heilshorn, S.C. and Tirrell, D.A. (2004), "Comparative cell response to artificial extracellular matrix proteins containing the RGD and CS5 cell-binding domains", Biomacromolecules, 5(2), 497-504.   DOI   ScienceOn
28 Mano, J.F. (2008), "Stimuli-responsive polymeric systems for biomedical applications", Adv. Eng. Mater., 10(6), 515-527.   DOI   ScienceOn
29 Martin, L., Alonso, M., Moller, M., Rodriguez-Cabello, J.C. and Mela, P. (2009), "3D microstructuring of smart bioactive hydrogels based on recombinant elastin-like polymers", Soft Matt., 5(8), 1591-1593.   DOI   ScienceOn
30 Maskarinec, S.A. and Tirrell, D.A. (2005), "Protein engineering approaches to biomaterials design", Curr. Opin. Biotech., 16(4), 422-426.   DOI   ScienceOn
31 Mosiewicz, K.A., Kolb, L., van der Vlies, A.J., Martino, M.M., Lienemann, P.S., Hubbell, J.A. and Lutolf, M.P. (2013), "In situ cell manipulation through enzymatic hydrogel photopatterning", Nat. Mater., 12(11), 1072-1078.   DOI   ScienceOn
32 Nowatzki, P.J. and Tirrell, D.A. (2004), "Physical properties of artificial extracellular matrix protein films prepared by isocyanate crosslinking", Biomater., 25(7), 1261-1267.   DOI   ScienceOn
33 Nicol, A., Gowda, D.C., Parker, T.M. and Urry, D.W. (1994), "Cell adhesive properties of bioelastic materials containing cell attachment sequences", Biotech. Bioact. Polymer., 95-113, Springer, US.
34 Nilsson, J., Stahl, S., Lundeberg, J., Uhlen, M. and Nygren, P.A. (1997), "Affinity fusion strategies for detection, purification, and immobilization of recombinant proteins", Protein Expres. Purify., 11(1), 1-16.   DOI   ScienceOn
35 Nowag, S. and Haag, R. (2014), "pH-responsive micro-and nanocarrier systems", Angew. Chem. Int. Edit., 53(1), 49-51.   DOI   ScienceOn
36 Ong, S.R., Trabbic-Carlson, K.A., Nettles, D.L., Lim, D.W., Chilkoti, A. and Setton, L.A. (2006), "Epitope tagging for tracking elastin-like polypeptides", Biomater., 27(9), 1930-1935.   DOI   ScienceOn
37 Popa, E.G., Caridade, S.G., Mano, J.F., Reis, R.L. and Gomes, M.E. (2013), "Chondrogenic potential of injectable $\kappa$-carrageenan hydrogel with encapsulated adipose stem cells for cartilage tissue-engineering applications", J. Tissue Eng. Regen. Med., doi: 10.1002/term.1683.   DOI   ScienceOn
38 Popa, E.G., Carvalho, P.P., Dias, A.F., Santos, T.C., Santo, V.E., Marques, A.P. and Reis, R.L. (2014), "Evaluation of the in vitro and in vivo biocompatibility of carrageenan-based hydrogels", J. Biomed. Mater. Res. Part A, 102(11), 4087-4097.   DOI   ScienceOn
39 Prieto, S., Shkilnyy, A., Rumplasch, C., Ribeiro, A., Arias, F.J., Rodriguez-Cabello, J.C. and Taubert, A. (2011), "Biomimetic calcium phosphate mineralization with multifunctional elastin-like recombinamers", Biomacromolecules, 12(5), 1480-1486.   DOI   ScienceOn
40 Urry, D.W., Parker, T.M., Reid, M.C. and Gowda, D.C. (1991), "Biocompatibility of the Bioelastic Materials, Poly (GVGVP) and Its Gamma-Irradiation Cross-Linked Matrix-Summary of Generic Biological Test-Results", J. Bioact. Compat. Polym., 3(6), 263-282.
41 Urry, D.W., Pattanaik, A., Xu, J., Cooper Woods, T., McPherson, D.T. and Parker, T.M. (1998), "Elastic protein-based polymers in soft tissue augmentation and generation", J. Biomater. Sci., Polym. Ed., 9(10), 1015-1048.   DOI   ScienceOn
42 Urry, D.W., Peng, S., Xu, J. and McPherson, D.T. (1997), "Characterization of waters of hydrophobic hydration by microwave dielectric relaxation", J. Am. Chem. Soc., 119(5), 1161-1162.   DOI   ScienceOn
43 Welsh, E.R. and Tirrell, D.A. (2000), "Engineering the extracellular matrix: a novel approach to polymeric biomaterials. I. Control of the physical properties of artificial protein matrices designed to support adhesion of vascular endothelial cells", Biomacromolecules, 1(1), 23-30.   DOI   ScienceOn
44 Wu, X., Sallach, R., Haller, C.A., Caves, J.A., Nagapudi, K., Conticello, V.P. and Chaikof, E.L. (2005), "Alterations in physical cross-linking modulate mechanical properties of two-phase protein polymer networks", Biomacromolecules, 6(6), 3037-3044.   DOI   ScienceOn
45 Zhu, J. and Marchant, R.E. (2011), "Design properties of hydrogel tissue-engineering scaffolds", Expert Rev. Med. Dev., 5(8), 607-626.