Effect of Poly(3-hydroxibutyrate-co-3-hydroxivalerate) Surface with Different Wettability on Fibroblast Behavior

  • Lee, Sang-Jin (Department of Industrial Chemistry, Hanyang University) ;
  • Lee, Young-Moo (Department of Industrial Chemistry, Hanyang University) ;
  • Khang, Gilson (Department of Polymer Science and Technology, Chunbuk National University) ;
  • Kim, Un-Young (Department of Polymer Engineering, Bukyung National University) ;
  • Lee, Bong (Department of Polymer Engineering, Bukyung National University) ;
  • Lee, Hai-Bang (Biomaterials Laboratory, Korea Research Institute of Chemical Technology)
  • Published : 2002.06.01

Abstract

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a microbial storage polymer with biodegradable properties. In order to improve the cell compatibility of PHBV surfaces, the physicochemical treatments have been demonstrated. In this study, physical method was corona discharge treatment and chemical method was chloric acid mixture solution treatment. The physicochemically treated PHBV film surfaces were characterized by the measurement of water contact angle, electron spectroscopy for chemical analysis, and scanning electron microscopy (SEM). The water contact angle of the physicochemically treated PHBV surfaces decreased from 75 to 30~40 degree, increased hydrophilicity. due to the introduction of oxygen-based functional group onto the PHBV backbone chain. The mouse NIH/3T3 fibroblasts cultured onto the physicochemically treated PHBV film surfaces with different wettability. The effect of the PHBV surface with different wettability was determined by SEM as counts of cell number and [$^3$H]thymidine incorporation as measures of cell proliferation. As the surface wettability increased, the number of the cell adhered and proliferated on the surface was increased. The result seems closely related with the serum protein adsorption on the physicochemically treated PHBV surface. In conclusion, this study demonstrated that the surface wettabilily of biodegradable polymer as the PHBV plays an important role for cell adhesion and proliferation behavior for biomedical application.

Keywords

References

  1. J. Biomed. Mater. Res. v.27 S. Gogolewski;M. Jovanoic;S. M. Perren;J. G. Dillon;M. K. Hughes https://doi.org/10.1002/jbm.820270904
  2. Drug News Perspectives v.2 S. Akhtar;C. W. Pouton
  3. CRC Crit. Rev. Therap. Drug Carrier Syst. v.3 K. Juni;M. Bakano
  4. Polymer(Korea) v.24 no.6 S. J. Lee;G. Khang;J. H. Lee;Y. M. Lee;H. B. Lee
  5. Polymer(Korea) v.24 no.6 G. Khang;S. J. Lee;J. H. Jeon;J. H. Lee;H. B. Lee
  6. Korea Polym. J. v.7 G. Khang;S. J. Lee;J. H. Lee;H. B. Lee
  7. J. Biomed. Mater. Res. v.20 J. M. Schakenraad;H. J. Busscher;C. H. R. Wildevuur;J. Arends https://doi.org/10.1002/jbm.820200609
  8. Biomaterials v.6 P. B. Van Wachem;T. Beugeling;J. Feijen;A. Bantjes;J. P. Detmers;W. G. Van Aken https://doi.org/10.1016/0142-9612(85)90101-2
  9. J. Colloid Interface Sci. v.155 Y. Tamada;Y. Ikada https://doi.org/10.1006/jcis.1993.1044
  10. Biomaterials v.8 P. B. Van Wachem;A. H. Hogt;T. Beugeling;J. Feijen;A. Bantjes;J. P. Detmers;W. G. Van Aken https://doi.org/10.1016/0142-9612(87)90001-9
  11. Macromolecular Solutions Macromolecular Solutions D. E. Gregonis;R. Hsu;D. E. Buerger;L. M. Smith;J. D. Andrad;R. B. Seymoor(ed.);D. A. Stahl(ed.)
  12. J. Biomed. Mater. Res. v.16 D. L. Coleman;D. E. Gregonis;J. D. Andrade https://doi.org/10.1002/jbm.820160407
  13. J. Colloid Interface Sci. v.104 T. A. Horbett;M. B. Schway;B. D. Ratner https://doi.org/10.1016/0021-9797(85)90006-2
  14. J. Colloid Interface Sci. v.157 D. L. Walker;M. D. Gregonis;W. M. Richert https://doi.org/10.1006/jcis.1993.1155
  15. Biomaterials v.6 M. J. Lydon;T. W. Minett;B. J. Tighe https://doi.org/10.1016/0142-9612(85)90100-0
  16. J. Colloid Interf. Sci. v.152 J. H. Lee;H. Kim;G. Khang;H. B. Lee;M. S. Jhon
  17. Encyclopedic Handbook of Biomatrials and Bioengineering v.1 Biocompatibility of Solid substrates based on surface wettability H. B. Lee;J. H. Lee;D. L. Wise(ed.);J. Trantolo(ed.);D. E. Altobeli(ed.);M. J. Yaszemski(ed.);J. D. Gresser(ed.);E. R. Schwartz(ed.)
  18. J. Biomater. Sci. Polym. Edn. v.4 J. H. Lee;H. B. Lee
  19. J. Colloid Interf. Sci. v.178 B. J. Jeong;J. H. Lee; H. B. Lee https://doi.org/10.1006/jcis.1996.0174
  20. J. Biomed. Mater. Res. v.34 J. H. Lee;B. J. Jeong;H. B. Lee https://doi.org/10.1002/(SICI)1097-4636(199701)34:1<105::AID-JBM14>3.0.CO;2-J
  21. Markromol. Chem., Macromol. Symp. v.118 J. H. Lee;G. Khang;J. W. Lee;H. B. Lee
  22. Biomaterials Res. v.1 G. Khang;J. W. Lee;J. H. Jeon;J. H. Lee;H. B. Lee
  23. Biomaterials v.18 J. H. Lee; J. W. Lee;G. Khang;H. B. Lee https://doi.org/10.1016/S0142-9612(96)00128-7
  24. J. Biomed. Mater. Res. v.41 J. H. Lee;H. B. Lee https://doi.org/10.1002/(SICI)1097-4636(199808)41:2<304::AID-JBM16>3.0.CO;2-K
  25. J. Biomed. Mater. Res. v.40 J. H. Lee;G. Khang;J. W. Lee;H. B. Lee https://doi.org/10.1002/(SICI)1097-4636(199805)40:2<180::AID-JBM2>3.0.CO;2-H
  26. J. Biomater. Sci. Polym. Edn. v.9 Y. Iwasaki;K. Ishihara;N. Nakabayashi;G. Khang;J. H. Jeon; J. W. Lee;H. B. Lee https://doi.org/10.1163/156856298X00163
  27. J. Colloid Interf. Sci. v.205 J. H. Lee;G. Khang;J. W. Lee;H. B. Lee https://doi.org/10.1006/jcis.1998.5688
  28. Polymer(Korea) v.23 G. Khang;J. H. Jeon;J. C. Cho;J. M. Rhee;H. B. Lee
  29. Polymer(Korea) v.24 G. Khang;S. J. Lee;J. H. Jeon;J. H. Lee;H. B. Lee
  30. Korea Polym. J. v.9 G. Khang;C. S. Park;J. M. Rhee;S. J. Lee;Y. M. Lee;M. K. Choi;I. Lee;H. B. Lee
  31. J. Appl. Polym. Sci. G. Khang;J. -H. Choee;J. M. Rhee;H. B. Lee
  32. J. Colloid Interf. Sci. v.230 J. H. Lee;S. J. Lee;G. Khang;H. B. Lee https://doi.org/10.1006/jcis.2000.7080
  33. Biomaterials v.15 J. H. Lee;H. W. Jung;I. K. Kang;H. B. Lee https://doi.org/10.1016/0142-9612(94)90169-4
  34. Biomaterials v.6 P. B. van Wachem;T. Beugeling;J. Feijen;A. Bantjes;J. P. Detmers;W. G. van Aken https://doi.org/10.1016/0142-9612(85)90101-2
  35. Biomaterials v.8 P. B. van Wachem;A. H. Hogt;T. Beugeling https://doi.org/10.1016/0142-9612(87)90001-9
  36. Polymers in Medicine Ⅱ E. Cheillin Y. Tamada;Y. Ikada;P. Giusti(ed.);C. Migliaresl(ed.);L. Nicolas(ed.)
  37. J. Colloid Interf. Sci. v.155 Y. Tamada;Y. Ikada https://doi.org/10.1006/jcis.1993.1044
  38. J. Biomed. Mater. Res. v.28 Y. Tamada;Y. Ikada https://doi.org/10.1002/jbm.820280705
  39. Korea Polym. J. v.8 G. Khang;J. H. Lee;J. M. Rhee;H. B. Lee
  40. Korea Polym. J. v.8 G. Khang;S. J. Lee;Y. M. Lee;J. H. Lee;H. B. Lee
  41. Biomaterials Res. v.2 J. H. Lee;D. K. Kim;G. Khang;J. S. Lee