• Title/Summary/Keyword: Biomedical polymer

Search Result 318, Processing Time 0.02 seconds

Synthesis and Characterization of Porous Poly(ε-caprolactone)/Silica Nanocomposites (다공성 폴리(ε-카프로락톤)/실리카 복합체의 제조 및 특성평가)

  • Son, Siwon;Choi, Ji-Eun;Cho, Hun;Kang, DaeJun;Lee, Deuk Yong;Kim, Jin-Tae;Jang, Ju-Woong
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.323-328
    • /
    • 2015
  • Poly(${\varepsilon}$-caprolactone) (PCL) nanofibers and PCL/silica membranes were synthesized by sol-gel derived electrospinning and casting, respectively. Smooth PCL nanofibers were obtained from the precursor containing N,N-dimethylformamide (DMF). PCL/silica membranes were prepared by varying the tetraethyl orthosilicate (TEOS) contents from 0 to 40 vol% to investigate the effect of silica addition on mechanical properties and cytotoxicity of the membranes. Although the strength of the membranes decreased from 12 to 8 MPa with increasing the silica content, the strength remained almost constant 7 weeks after dipping in phosphate buffered saline solution (PBS). The strength reduction was attributed to the presence of a patterned surface pores and micro-pores present in the walls between pores. The crystal structure of the membranes was orthorhombic and the crystallite size decreased from 57 to 18 nm with increasing the silica content. From the agar overlay test, the PCL/silica membranes exhibited neither deformation and discoloration nor lysis of L-929 fibroblast cells.

Preparation and Characterization of Biodegradable Hydrogels for Tissue Expander Application (조직 확장기용 생분해성 하이드로젤의 제조 및 특성분석)

  • Yuk, Kun-Young;Kim, Ye-Tae;Im, Su-Jin;Garner, John;Fu, Yourong;Park, Ki-Nam;Park, Jeong-Sook;Huh, Kang-Moo
    • Polymer(Korea)
    • /
    • v.34 no.3
    • /
    • pp.253-260
    • /
    • 2010
  • In this study, we prepared and evaluated a series of biocompatible and biodegradable block copolymer hydrogels with a delayed swelling property for tissue expander application. The hydrogels were synthesized via a radical crosslinking reaction of poly(ethylene glycol) (PEG) diacrylate and poly(D,L-lactide-co-glycolide)-poly(ethylene glycol)-poly(D,L-lactide-co-glycolide)(PLGA-PEG-PLGA) triblock copolymer diacrylate as a swelling/degradation controller (SDC). For the synthesis of various SDCs that can lead to different degradation and swelling properties, various PLGA-PEG-PLGA triblock copolymers with different LA/GA ratios and different PLGA block lengths were synthesized and modified to have terminal acrylate groups. The resultant hydrogels were flexible and elastic even in the dry state. The in vitro degradation tests showed that the delayed swelling properties of the hydrogels could be modulated by varying the chemical composition of the biodegradable crosslinker (SDC) and the block ratio of SDC/PEG. The histopathologic observation after implantation of hydrogels in mice was performed and evaluated by macrography and microscopy. Any significant inflammation or necrosis was not observed in the implanted tissues. Due to their biocompatibility, elasticity, sufficient swelling pressure, delayed swelling and controllable degradability, the hydrogels could be useful for tissue expansion and other biomedical applications.

A Study of Drug Content and Cell Cytotoxicity of Paclitaxel-eluting Stents Coated with Various Biopolymer (다양한 생체고분자로 코팅된 Paclitaxel Eluting Stent의 약물함량과 세포독성 연구)

  • Kim, Dong-Gon;Shin, Il-Gyun;Kim, Gi-Han;Kim, Seong-Hyeon;Lee, Ju-Ho;Ki, Byoyng-Yun;Nah, Jae-Woon;Suh, Tae-Suk;Kim, Sang-Ho
    • Progress in Medical Physics
    • /
    • v.20 no.3
    • /
    • pp.125-131
    • /
    • 2009
  • In this study, the paclitaxel eluting stent (PES) was prepared by coating a biliary stent with paclitaxel using various biopolymer such as poly (vinyl acetate) (PVAc), poly (lactic-co-glycolic acid) (PLGA), Silicone rubber for restenosis prevention in gastrointestinal disease by a dip-coating method. Drug contents of PES were increased as surface area of stent, concentration and molecular weight of coating polymer increase. In $^1H-NMR$ specta, we know that drug did not change by confirming specific peaks of paclitaxel in PES. As shown in SEM image, PES prepared using various biopolymer is coated clearly and regularly except Silicone rubber coating polymer. In in vitro cell cytotoxicity test, bare stent showed low cytotoxic effect against CT-26 colon carcinoma cell line on 3 day. However, PES coated with PLGA 502H showed the highest cytotoxicity because PLGA 502H is biodegradable polymer and has less molecular weight than other coating polymer. These results suggest that PES coated various biopolymer can be prevented restenosis in gastrointestinal disease.

  • PDF

All-trans Retinoic Acid-Associated Low Molecular Weight Water-Soluble Chitosan N anoparticles Based on Ion Complex

  • Kim Dong-Gon;Choi Changyong;Jeong Young-Il;Jang Mi-Kyeong;Nah Jae-Woon;Kang Seong-Koo;Bang Moon-Soo
    • Macromolecular Research
    • /
    • v.14 no.1
    • /
    • pp.66-72
    • /
    • 2006
  • The purpose of this study is to develop novel nanoparticles based on polyion complex formation between low molecular weight water-soluble chitosan (LMWSC) and all-trans retinoic acid (atRA). LMWSC nanoparticles encapsulating atRA based on polyion complex were prepared by mixing of atRA into LMWSC aqueous solution using ultrasonication. In FTIR spectra, the carbonyl group of atRA at 1690 $cm^{-1}$ disappeared or decreased when ion complexes were formed between LMWSC and atRA. In ${1}^H$ NMR spectra, specific peaks of atRA disappeared when atRA-encapsulated LMWSC (RAC) nanoparticles were reconstituted into $D_{2}O$ while specific peaks both of atRA and LMWSC appeared in $D_{2}O$/DMSO (1/3, v/v) mixture. XRD patterns also showed that the crystal peaks of atRA were disappeared by encapsulation into LMWSC nanoparticles. LMWSC nanoparticles encapsulating atRA have spherical shapes with particle size below 200 nm. The mechanism of encapsulation of atRA into LMWSC nanoparticles was thought to be an ion complex formation between LMWSC and atRA. LMWSC nanoparticles showed high atRA loading efficiency over 90$\%$ (w/w). AtRA was continuously released from nanoparticles over 10 days. In in vitro cell cytotoxicity test, free atRA showed higher cytotoxic effect against CT 26 colon carcinoma cell line on 1 day. However, RAC nanoparticles showed similar cytotoxicity against CT 26 cells on 2 day. These results suggest the potential for the introduction of LMWSC nanoparticles into various biomedical fields such as drug delivery.

Effect of Poly(3-hydroxibutyrate-co-3-hydroxivalerate) Surface with Different Wettability on Fibroblast Behavior

  • Lee, Sang-Jin;Lee, Young-Moo;Khang, Gilson;Kim, Un-Young;Lee, Bong;Lee, Hai-Bang
    • Macromolecular Research
    • /
    • v.10 no.3
    • /
    • pp.150-157
    • /
    • 2002
  • Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is a microbial storage polymer with biodegradable properties. In order to improve the cell compatibility of PHBV surfaces, the physicochemical treatments have been demonstrated. In this study, physical method was corona discharge treatment and chemical method was chloric acid mixture solution treatment. The physicochemically treated PHBV film surfaces were characterized by the measurement of water contact angle, electron spectroscopy for chemical analysis, and scanning electron microscopy (SEM). The water contact angle of the physicochemically treated PHBV surfaces decreased from 75 to 30~40 degree, increased hydrophilicity. due to the introduction of oxygen-based functional group onto the PHBV backbone chain. The mouse NIH/3T3 fibroblasts cultured onto the physicochemically treated PHBV film surfaces with different wettability. The effect of the PHBV surface with different wettability was determined by SEM as counts of cell number and [$^3$H]thymidine incorporation as measures of cell proliferation. As the surface wettability increased, the number of the cell adhered and proliferated on the surface was increased. The result seems closely related with the serum protein adsorption on the physicochemically treated PHBV surface. In conclusion, this study demonstrated that the surface wettabilily of biodegradable polymer as the PHBV plays an important role for cell adhesion and proliferation behavior for biomedical application.

Temperature-responsive bioactive hydrogels based on a multifunctional recombinant elastin-like polymer

  • Santo, Vitor E.;Prieto, Susana;Testera, Ana M.;Arias, Francisco J.;Alonso, Matilde;Mano, Joao F.;Rodriguez-Cabello, Jose Carlos
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.1
    • /
    • pp.47-59
    • /
    • 2015
  • A bioactive and multifunctional elastin-like polymer (ELP) was produced by genetic engineering techniques to develop new artificial matrices with the ability to mimic the extracellular matrix (ECM). The basic composition of this ELP is a thermo- and pH-sensitive elastin pentapeptide which has been enriched with RGD-containing domains, the RGD loop of fibronectin, for recognition by integrin receptors on their sequence to promote efficient cell attachment. Hydrogels of this RGD-containing polymer were obtained by crosslinking with hexamethylene diisocyanate, a lysine-targeted crosslinker. These materials retain the "smart" nature and temperature-responsive character, and the desired mechanical behavior of the elastin-like polymer family. The influence of the degree of crosslinking on the morphology and properties of the matrices were tested by calorimetric techniques and scanning electron microscopy (SEM). Their mechanical behavior was studied by dynamical mechanical analysis (DMA). These results show the potential of these materials in biomedical applications, especially in the development of smart systems for tissue engineering.

Fabrication and characterization of PCL/TCP-coated PHBV composite multilayer as a bone plate

  • Kim, Yang-Hee;Song, Ho-Yeon;Lee, Byong-Taek
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.39.2-39.2
    • /
    • 2009
  • In this work, Poly($\varepsilon$-Caprolactone)(PCL) andpoly(3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV) mats were fabricated usingelectrospinning process. The electrospinning process is a simple and efficient method to fabricate the nanofibrous mats. PCL and PHBV is a kind of biodegradable polymer but their mechanical properties aren't good. For improving mechanical properties, PHBV mats were coated by TCP. Using PCL mats and TCP-coated PHBV composite mats, a bio-resorbablebone plate were made by pressing. Detailed micro-structural characterization was done by SEM techniques. Tensile strength and bending strength were also evaluated for mechanical properties. The cytotoxicity evaluation ofPCL/TCP-coated PHBV composite multilayer was done by MTT assay. The evidence obtained in this work implies the potential for use as a biodegradable boneplate.

  • PDF

Paclitaxel Stimulates Cyclooxygenase-2 Expression via MAP Kinase Pathway in Rabbit Articular Chondrocytes

  • Im, Jeong-Hee;Kim, Song-Ja
    • Biomedical Science Letters
    • /
    • v.15 no.2
    • /
    • pp.141-146
    • /
    • 2009
  • Paclitaxel, an antimicrotubule agent, binds to beta-tubulin in the microtubule and stabilizes the polymer, thereby repressing dynamic instability. Here, we have demonstrated that microtubule cytoskeletal architecture involved in regulation of the COX-2 expression in chondrocyte treated with paclitaxel. Paclitaxel enhanced COX-2 expression and prostaglandin E2 production, as indicated by the Western blot analysis, reverse transcriptase PCR(RT-PCR) and immunofluorescence staining, and $PGE_2$ assay, respectively. In our previous data have shown that paclitaxel treatment stimulated activation of ERK-1/2 and p38 kinase(Im et al., 2009). SB203580, an inhibitor of p38 kinase, blocked the induction of COX-2 expression by paclitaxel. Also PD98059, an inhibitor of ERK-1/2 kinase was blocked the induced COX-2 expression. These results indicate that activation of ERK-1/2 and p38 kinase is required for COX-2 expression induced by paclitaxel in rabbit articular chondrocytes.

  • PDF

Construction of a Cell-Adhesive Nanofiber Substratum by Incorporating a Small Molecule

  • Jung, Dongju
    • Biomedical Science Letters
    • /
    • v.19 no.1
    • /
    • pp.25-31
    • /
    • 2013
  • Electrospun nanofibers are being widely used as a substratum for mammalian cell culture owing to their structural similarity to collagen fibers found in extracellular matrices of mammalian cells and tissues. Especially, development of diverse synthetic polymers has expanded use of electrospun nanofibers for constructing cell culture substrata. Synthetic polymers have several benefits comparing to natural polymer for their structural consistency, low cost, and capability for blending with other polymers or small molecules to enhance their structural integrity or add biological functions. PMGI (polymethylglutarimide) is one of the synthetic polymers that produced a rigid nanofiber that enables incorporation of small molecules, peptides, and gold nanoparticles through co-electrospinning process, during which the materials are fixed without any chemical modifications in the PMGI nanofibers by maintaining their activities. Using the phenomenon of PMGI nanofiber, here I introduce a construction method of a nanofiber substratum having cell-affinity function towards a pluripotent stem cell by incorporating a small molecule in the PMGI nanofiber.

Antimicrobial Hydrogel Contact Lens Containing Alginate

  • Lee, Hyun-Mee;Kim, Jong-Ki;Cho, Tae-Sub
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4239-4243
    • /
    • 2011
  • Biocompatible hydrogels from 2-hydroxyethyl methacrylate (HEMA) monomer containing various amount of alginate in the presence and absence of hydrophilic methacrylic acid (MAA) were synthesized in order for biomedical application. The antimicrobial effect and interaction with proteins for hydrogels were investigated in this study. MAA was introduced because it was expected to increase the amount of water content in the polymer which is an important factor for biocompatibility, and alginate was expected to enhance the antimicrobial activity. The antimicrobial effect against S. aureus and E. coli increased for all hydrogels as the amount of alginate and MAA contained. Presence of MAA further enhances the antimicrobial effect. Amount of adsorption of bovine serum albumin (BSA) increased with increasing concentration of alginate whether MAA was present or not. Contrarily, the amount of lysozyme was not affected with increasing alginate concentration in the absence of MAA, while it decreased in the presence of MAA.