• 제목/요약/키워드: Biomedical Applications

검색결과 763건 처리시간 0.025초

Bio-ink Materials for 3D Bio-printing

  • Kim, Ji Seon;Hong, Soyoung;Hwang, Changmo
    • Journal of International Society for Simulation Surgery
    • /
    • 제3권2호
    • /
    • pp.49-59
    • /
    • 2016
  • 3D printing is also known as additive manufacturing technique in which has been used in various commercial fields such as engineering, art, education, and medicine. The applications such as fabrication of tissues and organs, implants, drug delivery, creation surgical models using 3D printer in medical field are expanding. Recently, 3D printing has been developing for produce biomimetic 3D structure using biomaterials containing living cells and that is commonly called "3D bio-printing". The 3D bio-printing technologies are usually classified four upon printing methods: Laser-assisted printing, Inkjet, extrusion, and stereolithograpy. In the bio-printing, bio-inks (combined hydrogels and living cells) are as important components as bio-printing technologies. The presence of various types of bioinks, however, in this review, we focused on the bio-inks which enables bioprinting efficacy using hydrogels with living cells.

Future Perspectives on New Approaches in Pathogen Detection

  • Li, Peng;Ho, Bow;Ding, Jeak Ling
    • 대한의생명과학회지
    • /
    • 제21권4호
    • /
    • pp.165-171
    • /
    • 2015
  • Microbial pathogens are responsible for most of the rapidly-spreading deadly infectious diseases against humans. Thus, there is an urgent need for efficient and rapid detection methods for infectious microorganisms. The detection methods should not only be targeted and specific, but they have to be encompassing of potential changes of the pathogen as it evolves and mutates quickly during an epidemic or pandemic. The existing diagnostics such as the antibody-based ELISA immunoassay and PCR methods are too selective and narrowly focused; they are insufficient to capture newly evolved mutant strains of the pathogen. Here, we introduce a fresh perspective on some new technologies, including aptamers and next generation sequencing for pathogen detection. These technologies are not in their infancy; they are reasonably mature and ready, and they hold great promise for unparalleled applications in pathogen detection.

Microarray Approaches in Clinical Oncology: Potential and Perspectives

  • Kang, Ji Un
    • 대한의생명과학회지
    • /
    • 제20권4호
    • /
    • pp.185-193
    • /
    • 2014
  • Cancers are based upon an array of orchestrated genetic changes and the identification of changes causally related to the carcinogenic process. To elucidate the mechanism of cancer carcinogenesis, it is necessary to reconstruct these molecular events at each level. Microarray technologies have been extensively used to evaluate genetic alterations associated with cancer onset and progression in clinical oncology. The clinical impact of the genomic alterations identified by microarray technologies are growing rapidly and array analysis has been evolving into a diagnostic tool to better identify high-risk patients and predict patient outcomes from their genomic profiles. Here, we discuss the state-of-the-art microarray technologies and their applications in clinical oncology, and describe the potential benefits of these analysis in the clinical implications and biological insights of cancer biology.

Microfluidic Flow Cytometry: Principles of Cell Analysis and Applications

  • Shin, Se-Hyun
    • International Journal of Vascular Biomedical Engineering
    • /
    • 제4권2호
    • /
    • pp.1-6
    • /
    • 2006
  • Microsystems create new opportunities for conventional cell analysis by combining microfluidics and flow cytometry. This article describes recent developments in conventional flow cytometers and related microfluidic flow cytometers to detect, analyze, and sort cells or particles. Flow cytometry strongly consisted of fluidics, optics and electronics requires a large space to equip various components, which are mostly the fluidic components such as compressor, fluid handling system. Adopting microfluidics into flow cytometry enables volume- and power-efficient, inexpensive and flexible analysis of particulate samples. In this paper, we review various efforts that take advantage of novel techniques to build microfluidic cell analysis systems with high-speed analytical capability. Highly integrated microfluidic cytometry shows great promise for basic biomedical and pharmaceutical research, and robust and portable point-of-care devices could be used in clinical settings.

  • PDF

생체의용계측을 위한 극초단 Cr4+:Forsterite 레이저의 이론 해석 (Theoritical Analysis of Ultra Short Pulse Cr4+:Forsterite Laser for the Biomedical Applications)

  • 김신자;황대석;이승용;고대영;류광렬;이호근;이영우
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2004년도 춘계종합학술대회
    • /
    • pp.335-338
    • /
    • 2004
  • 본 논문에서는 생체 계측용 OCT의 광원으로 사용될 광대역 Cr4+:Forsterite 레이저의 동작 특성을 알아보기 위해 이론 해석과 수치 해석을 수행하였다. 수치해석에 사용된 Cr4+;Forsterite 매질 모델은 직경이 3mm이고, 길이는 5mm로 0.04%의 크롬 도핑 농도를 갖는다. 해석 결과에 의해 펌핑 광원이 600mW 일 때 발진하고, 펌핑 광원이 5W 부근일 때 포화된다는 것을 알 수 있었다.

  • PDF

Recent Progress on Microfluidic Electrophoresis Device Application in Mass Spectrometry

  • Roy, Swapan Kumar;Kim, Seongnyeon;Yoon, Jung H.;Yoon, Yong-Kyu;Cho, Kun
    • Mass Spectrometry Letters
    • /
    • 제9권1호
    • /
    • pp.1-16
    • /
    • 2018
  • Microfluidic technologies hold high promise and emerge as a potential molecular tool to facilitate the progress of fundamental and applied biomedical researches by enabling miniaturization and upgrading current biological research tools. In this review, we summarize the state of the art of existing microfluidic technologies and its' application for characterizing biophysical properties of individual cells. Microfluidic devices offer significant advantages and ability to handle in integrating sample processes, minimizing sample and reagent volumes, and increased analysis speed. Therefore, we first present the basic concepts and summarize several achievements in new coupling between microfluidic devices and mass spectrometers. Secondly, we discuss the recent applications of microfluidic chips in various biological research field including cellular and molecular level. Finally, we present the current challenge of microfluidic technologies and future perspective in this study field.

Radioiodination strategies for carborane compounds

  • Rajkumar Subramani;Abhinav Bhise;Jeongsoo Yoo
    • 대한방사성의약품학회지
    • /
    • 제8권1호
    • /
    • pp.39-44
    • /
    • 2022
  • The development of methods for the inert and stable radiohalogenation of targeted radiopharmaceuticals is a prerequisite for real-time diagnosis and therapy using radiohalogenated radiopharmaceuticals. Radiohalogenated carboranes demonstrate superior stability in vivo and versatile applications compared with directly labeled tyrosine analogues or synthetically modified organic compounds. Herein, we focus on the most common approaches for the radioiodination (123l, 124l, 125l, and 131l) of carborane derivatives.

Multi-omics techniques for the genetic and epigenetic analysis of rare diseases

  • Yeonsong Choi;David Whee-Young Choi;Semin Lee
    • Journal of Genetic Medicine
    • /
    • 제20권1호
    • /
    • pp.1-5
    • /
    • 2023
  • Until now, rare disease studies have mainly been carried out by detecting simple variants such as single nucleotide substitutions and short insertions and deletions in protein-coding regions of disease-associated gene panels using diagnostic next-generation sequencing in association with patient phenotypes. However, several recent studies reported that the detection rate hardly exceeds 50% even when whole-exome sequencing is applied. Therefore, the necessity of introducing whole-genome sequencing is emerging to discover more diverse genomic variants and examine their association with rare diseases. When no diagnosis is provided by whole-genome sequencing, additional omics techniques such as RNA-seq also can be considered to further interrogate causal variants. This paper will introduce a description of these multi-omics techniques and their applications in rare disease studies.

뇌혈종 제거 수술을 위한 무마커 수술 유도 로봇 시스템의 정확도 향상을 위한 캘리브레이션 기법 (Application of Calibration Techniques to Enhance Accuracy of Markerless Surgical Robotic System for Intracerebral Hematoma Surgery)

  • 박규식;윤현민;신상균;조현철;김영준;김래현;이득희
    • 한국CDE학회논문집
    • /
    • 제20권3호
    • /
    • pp.246-253
    • /
    • 2015
  • In this paper, we propose calibration methods that can be applied to the markerless surgical robotic system for Intracerebral Hematoma (ICH) Surgery. This surgical robotic system does not require additional process of patient imaging but only uses CT images that are initially taken for a diagnosis purpose. Furthermore, the system applies markerless registration method other than using stereotactic frames. Thus, in overall, our system has many advantages when compared to other conventional ICH surgeries in that they are non-invasive, much less exposed to radiation exposure, and most importantly reduces a total operation time. In the paper, we specifically focus on the application of calibration methods and their verification which is one of the most critical factors that determine the accuracy of the system. We implemented three applications of calibration methods between the coordinates of robot's end-effector and the coordinates of 3D facial surface scanner, based on the hand-eye calibration method. Phantom tests were conducted to validate the feasibility and accuracy of our proposed calibration methods and the surgical robotic system.

유체의 성질에 따른 자계용적맥파의 검출 특성에 관한 연구 (A Study on the Detection Characteristics of the Magneto-Plethysmography According to Fluid Properties)

  • 김상민;이강휘;이성수;이혁재;이병헌;김경섭;이정환
    • 전기학회논문지
    • /
    • 제67권7호
    • /
    • pp.946-953
    • /
    • 2018
  • Photo-plethysmography (PPG), which measures changes in the peripheral blood flow of a human body using difference in absorption rate of light, is a measurement method that is studied and used in clinical and various applications due to its simple circuit configuration and measurement convenience. Magneto-plethysmography (MPG), which is newly developed by our team, is a method of measuring changes in the conductivity of biological tissues by using a eddy current induced by a time-varying magnetic field, and is not subject to optical interference. In this study, we investigated the detection characteristics of MPG according to the change of the conductivity of the object and fluid to be measured by simultaneously measuring PPG and MPG. In order to control the speed of fluid known in advance, a blood flow simulator was implemented and used. The fluid used in the experiment was general mineral water and physiological saline (0.9% NaCl) solution. Experimental results show that the amplitude change of the measured PPG was 0.3% in normal water and saline solution, and that of MPG was 77.3%. Therefore, it is considered that the magneto-plethysmography (MPG) has a strong correlation with the conductivity of the fluid.