DOI QR코드

DOI QR Code

Bio-ink Materials for 3D Bio-printing

  • Kim, Ji Seon (Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center) ;
  • Hong, Soyoung (Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center) ;
  • Hwang, Changmo (Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center)
  • Received : 2016.11.30
  • Accepted : 2016.12.05
  • Published : 2016.12.10

Abstract

3D printing is also known as additive manufacturing technique in which has been used in various commercial fields such as engineering, art, education, and medicine. The applications such as fabrication of tissues and organs, implants, drug delivery, creation surgical models using 3D printer in medical field are expanding. Recently, 3D printing has been developing for produce biomimetic 3D structure using biomaterials containing living cells and that is commonly called "3D bio-printing". The 3D bio-printing technologies are usually classified four upon printing methods: Laser-assisted printing, Inkjet, extrusion, and stereolithograpy. In the bio-printing, bio-inks (combined hydrogels and living cells) are as important components as bio-printing technologies. The presence of various types of bioinks, however, in this review, we focused on the bio-inks which enables bioprinting efficacy using hydrogels with living cells.

Keywords

References

  1. Ventola CL. Medical Applications for 3D Printing: Current and Projected Uses, Pharmacy and Therapeutics 2014;39(10):704-711
  2. Murphy SV, Atala A. 3D bioprinting of tissues and organs, Nat Biotech 2014;32(8):773-785 https://doi.org/10.1038/nbt.2958
  3. Langer R, Vacanti JP. Tissue engineering, Science 1993;260(5110): 920-926 https://doi.org/10.1126/science.8493529
  4. Malda J, Visser J, Melchels FP, Jungst T, Hennink WE, Dhert WJ, et al. 25th anniversary article: Engineering hydrogels for biofabrication, Advanced Materials 2013;25(36):5011-28 https://doi.org/10.1002/adma.201302042
  5. Klein GT, Lu Y , Wang MY. 3D printing and neurosurgery--ready for prime time?, World neurosurgery 2013;80(3-4):233-235 https://doi.org/10.1016/j.wneu.2013.07.009
  6. Schubert C, Van Langeveld MC, Donoso LA. Innovations in 3D printing: a 3D overview from optics to organs, The British journal of ophthalmology 2014;98(2):159-161 https://doi.org/10.1136/bjophthalmol-2013-304446
  7. Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations, European Spine Journal 2008;17(Suppl 4):467-479 https://doi.org/10.1007/s00586-008-0745-3
  8. O'Brien FJ. Biomaterials & scaffolds for tissue engineering, Materials Today 2011;14(3):88-95 https://doi.org/10.1016/S1369-7021(11)70058-X
  9. Hendow EK, Guhmann P, Wright B, Sofokleous P, Parmar N, Day RM. Biomaterials for hollow organ tissue engineering, Fibrogenesis & Tissue Repair 2016;9(1):1-7 https://doi.org/10.1186/s13069-016-0038-0
  10. El-Sherbiny IM, Yacoub MH. Hydrogel scaffolds for tissue engineering: Progress and challenges, Global Cardiology Science & Practice 2013;2013(3):316-342
  11. Huang G, Wang L, Wang S , Han Y, Wu J, Zhang Q, et al. Engineering three-dimensional cell mechanical microenvironment with hydrogels. Biofabrication 2012;4(4):042001 https://doi.org/10.1088/1758-5082/4/4/042001
  12. Song H-HG, Park KM, Gerecht S. Hydrogels to model 3D in vitro microenvironment of tumor vascularization, Advanced drug delivery reviews 2014;79-80:19-29 https://doi.org/10.1016/j.addr.2014.06.002
  13. Ravichandran R, Islam MM, Alarcon EI, Samanta A, Wang S, Lundstrom P, et al. Functionalised type-I collagen as a hydrogel building block for bio-orthogonal tissue engineering applications. Journal of Materials Chemistry B 2016;4(2):318-326 https://doi.org/10.1039/C5TB02035B
  14. Lim G, Choi D, Richardson EB. 3-D Printing in Organ Transplantation. Hanyang Med Rev 2014;34:158-164 https://doi.org/10.7599/hmr.2014.34.4.158
  15. Koch L, Gruene M, Unger C, Chichkov B. Laser assisted cell printing. Current pharmaceutical biotechnology 2013;14(1):91-97 https://doi.org/10.2174/138920113804805368
  16. Koch L, Kuhn S, Sorg H, Gruene M, Schlie S, Gaebel R, et al. Laser printing of skin cells and human stem cells, Tissue engineering Part C. Methods 2010;16(5):847-854 https://doi.org/10.1089/ten.tec.2009.0397
  17. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nature biotechnology 2014;32(8):773-785 https://doi.org/10.1038/nbt.2958
  18. Calvert P. Materials science Printing cells. Science 2007;318(5848): 208-209 https://doi.org/10.1126/science.1144212
  19. Derby B. Bioprinting: inkjet printing proteins and hybrid cell-containing materials and structures. Journal of Materials Chemistry 2008;18(47):5717-5721 https://doi.org/10.1039/b807560c
  20. Tekin E, Smith PJ, Schubert US. Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter 2008;4(4):703-713 https://doi.org/10.1039/b711984d
  21. Pat Fi, Gantelius J, Svahn HA. 3D Bioprinting of Tissue/Organ Models, Angewandte Chemie 2016;55(15):4650-4665 https://doi.org/10.1002/anie.201505062
  22. Koch L, Deiwick A, Schlie S, Michael S, Gruene M, Coger V, et al. Skin tissue generation by laser cell printing. Biotechnology and Bioengineering 2012;109(7):1855-1863 https://doi.org/10.1002/bit.24455
  23. Mandrycky C, Wang Z, Kim K, Kim DH. 3D bioprinting for engineering complex tissues. Biotechnology Advances;2015
  24. Mandrycky C, Wang Z, Kim K, Kim DH. 3D bioprinting for engineering complex tissues. Biotechnology Advances 2016;34(4):422- 434 https://doi.org/10.1016/j.biotechadv.2015.12.011
  25. Khalil S, Sun W. Biopolymer deposition for freeform fabrication of hydrogel tissue constructs, Materials Science and Engineering: C 2007;27(3):469-478 https://doi.org/10.1016/j.msec.2006.05.023
  26. Arcaute K, Mann B, Wicker R. Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds. Acta Biomaterialia 2010;6(3):1047-1054 https://doi.org/10.1016/j.actbio.2009.08.017
  27. Lin H, Zhang D, Alexander PG, Yang G, Tan J, Cheng AW, et al. Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture. Biomaterials 2013;34(2):331-339 https://doi.org/10.1016/j.biomaterials.2012.09.048
  28. Pereira RF, Bartolo PJ. 3D Photo-Fabrication for Tissue Engineering and Drug Delivery. Engineering 2015;1(1):090-112 https://doi.org/10.15302/J-ENG-2015015
  29. Melchels FP, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering. Biomaterials 2010; 31(24):6121-6130 https://doi.org/10.1016/j.biomaterials.2010.04.050
  30. Duan B, Hockaday LA, Kang KH, Butcher JT. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. Journal of Biomedical Materials Research Part A 2013;101 (5):1255-1264
  31. Hong S, Song S-J, Lee JY, Jang H, Choi J, Sun K, et al. Cellular behavior in micropatterned hydrogels by bioprinting system depended on the cell types and cellular interaction. Journal of Bioscience and Bioengineering 2013;116(2):224-230 https://doi.org/10.1016/j.jbiosc.2013.02.011
  32. Virginie K, Fabien G, Isabelle A, Bertrand G, Sylvain M, Joelle A, et al. In vivo bioprinting for computer- and robotic-assisted medical intervention: preliminary study in mice. Biofabrication 2010;2(1): 014101 https://doi.org/10.1088/1758-5082/2/1/014101
  33. Cui X, Breitenkamp K, Finn M, Lotz M, D'Lima DD. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Engineering Part A 2012;18(11-12):1304-1312 https://doi.org/10.1089/ten.tea.2011.0543
  34. Xu F, Sridharan B, Wang S, Gurkan UA, Syverud B, Demirci U. Embryonic stem cell bioprinting for uniform and controlled size embryoid body formation. Biomicrofluidics 2011;5(2):022207 https://doi.org/10.1063/1.3580752
  35. Catros S, Guillotin B, Bacakova M, Fricain J-C, Guillemot F. Effect of laser energy, substrate film thickness and bioink viscosity on viability of endothelial cells printed by Laser-Assisted Bioprinting. Applied Surface Science 2011;257(12):5142-5147 https://doi.org/10.1016/j.apsusc.2010.11.049
  36. Sylvain C, Jean-Christophe F, Bertrand G, Benjamin P, Reine B, Murielle R, et al. Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite. Biofabrication 2011;3(2):025001 https://doi.org/10.1088/1758-5082/3/2/025001
  37. Michael S, Sorg H, Peck C-T, Koch L, Deiwick A, Chichkov B, et al. Tissue Engineered Skin Substitutes Created by Laser-Assisted Bioprinting Form Skin-Like Structures in the Dorsal Skin Fold Chamber in Mice. PloS one 2013;8(3):e57741 https://doi.org/10.1371/journal.pone.0057741
  38. Gruene M, Pflaum M, Deiwick A, Koch L, Schlie S, Unger C, et al. Adipogenic differentiation of laser-printed 3D tissue grafts consisting of human adipose-derived stem cells. Biofabrication 2011;3(1): 015005 https://doi.org/10.1088/1758-5082/3/1/015005
  39. Farzaneh D, Yin Y, Yahui Z, Aribet MDJ, Edward AS, Ibrahim TO. In vitro evaluation of carbon-nanotube-reinforced bioprintable vascular conduits. Nanotechnology 2014;25(14):145101 https://doi.org/10.1088/0957-4484/25/14/145101
  40. Duan B, Hockaday LA, Kang KH, Butcher JT. 3D Bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. Journal of Biomedical Materials Research Part A 2013;101A (5):1255-1264 https://doi.org/10.1002/jbm.a.34420
  41. Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen D-HT, Cohen DM, et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nature materials 2012;11(9):768-774 https://doi.org/10.1038/nmat3357
  42. Kolesky DB, Truby RL, Gladman AS, BusbeeTA, Homan KA, Lewis JA. 3D Bioprinting of Vascularized, Heterogeneous Cell- Laden Tissue Constructs, Advanced materials 2014;26(19):3124- 3130 https://doi.org/10.1002/adma.201305506
  43. Khalil S, Sun W. Bioprinting endothelial cells with alginate for 3D tissue constructs. Journal of Biomechanical Engineering 2009; 131(11):111002 https://doi.org/10.1115/1.3128729
  44. Loozen LD, Wegman F, Oner FC, Dhert WJA, Alblas J. Porous bioprinted constructs in BMP-2 non-viral gene therapy for bone tissue engineering, Journal of Materials Chemistry B 2013;1(48): 6619-6626 https://doi.org/10.1039/c3tb21093f
  45. Jetze V, Benjamin P, Thijs JB, Jelle B, Wouter JAD, Ferry PWM, et al. Biofabrication of multi-material anatomically shaped tissue constructs. Biofabrication 2013;5(3):035007 https://doi.org/10.1088/1758-5082/5/3/035007
  46. Christopher MO, Francoise M, Gabor F, Cheryl MH. Biofabrication and testing of a fully cellular nerve graft. Biofabrication 2013; 5(4): 045007 https://doi.org/10.1088/1758-5082/5/4/045007
  47. Tyler KM, Morgan B, Young-Joon S, Hyun-Wook K, Sang Jin L, James JY, et al. A 3D bioprinted complex structure for engineering the muscle-tendon unit. Biofabrication 2015;7(3):035003 https://doi.org/10.1088/1758-5090/7/3/035003
  48. Ting Z, Karen Chang Y, Liliang O, Wei S. Mechanical characterization of bioprinted in vitro soft tissue models. Biofabrication 2013;5(4):045010 https://doi.org/10.1088/1758-5082/5/4/045010
  49. Wang Z, Abdulla R, Parker B, Samanipour R, Ghosh S, Kim K. A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication 2015;7(4):045009 https://doi.org/10.1088/1758-5090/7/4/045009
  50. Robert C, Kamal E, Honglu W, Wei S. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model. Biofabrication 2010;2(4):045004 https://doi.org/10.1088/1758-5082/2/4/045004
  51. Ker EDF, Nain AS, Weiss LE, Wang J ,Suhan J, Amon CH, et al. Bioprinting of growth factors onto aligned sub-micron fibrous scaffolds for simultaneous control of cell differentiation and alignment. Biomaterials 2011;32(32):8097-8107 https://doi.org/10.1016/j.biomaterials.2011.07.025
  52. Dennis SG, Trusk T, Richards D, Jia J, Tan Y, Mei Y, et al. Viability of Bioprinted Cellular Constructs Using a Three Dispenser Cartesian Printer. Journal of Visualized Experiments 2015;JoVE (103): 103791/53156
  53. Do A-V, Khorsand B, Geary SM, Salem AK. 3D Printing of Scaffolds for Tissue Regeneration Applications. Advanced Healthcare Materials 2015;4(12):1742-1762 https://doi.org/10.1002/adhm.201500168
  54. Wust S, Muller R, Hofmann S. Controlled Positioning of Cells in Biomaterials-Approaches Towards 3D Tissue Printing. Journal of Functional Biomaterials 2011;2(3):119-154 https://doi.org/10.3390/jfb2030119
  55. Picout DR, Ross-Murphy SB. Rheology of biopolymer solutions and gels. The Scientific World Journal 2003;3:105-121 https://doi.org/10.1100/tsw.2003.15
  56. Chimene D, Lennox KK, Kaunas RR, Gaharwar AK. Advanced Bioinks for 3D Printing: A Materials Science Perspective. Annals of Biomedical Engineering 2016;44(6):2090-2102 https://doi.org/10.1007/s10439-016-1638-y
  57. Wust S, Godla ME, Muller R, Hofmann S. Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomaterialia 2014;10(2):630-640 https://doi.org/10.1016/j.actbio.2013.10.016
  58. Warrenv J, Offenberger S, Toghiani H, Pittman CU Jr, Lacy TE, Kundu S. Effect of Temperature on the Shear-Thickening Behavior of Fumed Silica Suspensions. ACS Applied Materials & Interfaces 2015;7(33):18650-18661 https://doi.org/10.1021/acsami.5b05094
  59. Patteson AE, Gopinath A, Goulian M, Arratia PE. Running and tumbling with E coli in polymeric solutions. Scientific Reports 2015; 5:15761 https://doi.org/10.1038/srep15761
  60. Highley CB, Rodell CB, Burdick JA. Direct 3D Printing of Shear- Thinning Hydrogels into Self-Healing Hydrogels. Advanced Materials 2015;27(34):5075-5079 https://doi.org/10.1002/adma.201501234
  61. Black J. Biological performance of materials: fundamentals of biocompatibility, CRC Press;2005
  62. Hunt NC, Grover LM. Cell encapsulation using biopolymer gels for regenerative medicine. Biotechnology Letters 2010;32(6):733-742 https://doi.org/10.1007/s10529-010-0221-0
  63. Xu T, Binder KW, Albanna MZ, Dice D, Zhao W, Yoo JJ, et al. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication 2013;5(1):015001 https://doi.org/10.1088/1758-5082/5/1/015001
  64. Skardal A, Mack D, Kapetanovic E, Atala A, Jackson JD, Yoo J, et al. Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Translational Medicine 2012;1 (11):792 https://doi.org/10.5966/sctm.2012-0088
  65. Bhattacharjee A, Bansal M. Collagen structure: the Madras triple helix and the current scenario. IUBMB Life 2005;57(3):161-172 https://doi.org/10.1080/15216540500090710
  66. Kim G, Ahn S, Kim Y, Cho Y, Chun W. Coaxial structured collagen- alginate scaffolds: fabrication, physical properties, and biomedical application for skin tissue regeneration. Journal of Materials Chemistry 2011;21(17):6165-6172 https://doi.org/10.1039/c0jm03452e
  67. Liu CZ, Xia ZD, Han ZW, Hulley PA, Triffitt JT, Czernuszka JT. Novel 3D collagen scaffolds fabricated by indirect printing technique for tissue engineering. Journal of Biomedical Materials Research Part B, Applied Biomaterials 2008;85(2):519-528
  68. Lee W, Debasitis JC, Lee VK, Lee JH, Fischer K, Edminster K, et al. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials 2009;30(8):1587-1595 https://doi.org/10.1016/j.biomaterials.2008.12.009
  69. El-Sherbiny IM, Yacoub MH. Hydrogel scaffolds for tissue engineering: Progress and challenges. Global Cardiology Science & Practice 2013;2013(3):316-342
  70. Palmer LC, Newcomb CJ, Kaltz SR, Spoerke ED, Stupp SI. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chemical Reviews 2008;108(11):4754-4783 https://doi.org/10.1021/cr8004422
  71. Grover CN, Gwynne JH, Pugh N, Hamaia S, Farndale RW, Best SM, et al. Crosslinking and composition influence the surface properties, mechanical stiffness and cell reactivity of collagen-based films. Acta Biomaterialia 2012;8(8):3080-3090 https://doi.org/10.1016/j.actbio.2012.05.006
  72. Gasperini L, Mano JF, Reis RL. Natural polymers for the microencapsulation of cells, Journal of the Royal Society. Interface / the Royal Society 2014;11(100):20140817 https://doi.org/10.1098/rsif.2014.0817
  73. Yan Y, Wang X, Pan Y, Liu H, Cheng J, Xiong Z, et al. Fabrication of viable tissue-engineered constructs with 3D cell-assembly technique. Biomaterials 2005;26(29):5864-5871 https://doi.org/10.1016/j.biomaterials.2005.02.027
  74. Wang X, Yan Y, Pan Y, Xiong Z, Liu H, Cheng J, et al. Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system. Tissue Engineering 2006;12(1):83-90 https://doi.org/10.1089/ten.2006.12.83
  75. Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Progress in Polymer Science 2012;37(1):106-126 https://doi.org/10.1016/j.progpolymsci.2011.06.003
  76. Ichioka S, Harii K, Nakahara M, Sato Y. An experimental comparison of hydrocolloid and alginate dressings, and the effect of calcium ions on the behaviour of alginate gel, Scandinavian journal of plastic and reconstructive surgery and hand surgery/Nordisk plastikkirurgisk forening and. Nordisk Klubb for Handkirurgi 1998;32 (3):311-316 https://doi.org/10.1080/02844319850158660
  77. Augst AD, Kong HJ, Mooney DJ. Alginate hydrogels as biomaterials, Macromolecular bioscience 2006;6(8):623-633 https://doi.org/10.1002/mabi.200600069
  78. Wang L, Shelton RM, Cooper PR, Lawson M, Triffitt JT, Barralet JE. Evaluation of sodium alginate for bone marrow cell tissue engineering. Biomaterials 2003;24(20):3475-3481 https://doi.org/10.1016/S0142-9612(03)00167-4
  79. Vanderhooft JL, Mann BK, Prestwich GD. Synthesis and characterization of novel thiol-reactive poly (ethylene glycol) cross-linkers for extracellular-matrix-mimetic biomaterials. Biomacromolecules 2007;8(9):2883-2889 https://doi.org/10.1021/bm0703564
  80. Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chemical Reviews 2001;101(7):1869-1879 https://doi.org/10.1021/cr000108x
  81. Rowley JA, Mooney DJ. Alginate type and RGD density control myoblast phenotype. Journal of Biomedical Materials Research 2002;60(2):217-223 https://doi.org/10.1002/jbm.1287
  82. Kundu J, Shim JH, Jang J, Kim SW, Cho DW. An additive manufacturing- based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering. Journal of Tissue Engineering and Regenerative Medicine 2015;9(11):1286-1297 https://doi.org/10.1002/term.1682
  83. Grant GT, Morris ER, Rees DA, Smith PJ, Thom D. Biological interactions between polysaccharides and divalent cations: the eggbox model. FEBS Letters 1973;32(1):195-198 https://doi.org/10.1016/0014-5793(73)80770-7
  84. Pillai C, Paul W, Sharma CP. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in Polymer Science 2009;34(7):641-678 https://doi.org/10.1016/j.progpolymsci.2009.04.001
  85. Talaat W, Haider M, Kawas SA, Kandil NG, Harding DR. Chitosan- Based Thermosensitive Hydrogel for Controlled Drug Delivery to the Temporomandibular Joint. The Journal of Craniofacial surgery 2016
  86. Badawy MEI, Rabea EI. A Biopolymer Chitosan and Its Derivatives as Promising Antimicrobial Agents against Plant Pathogens and Their Applications in Crop Protection. International Journal of Carbohydrate Chemistry 2011;(2011)
  87. Elgadir MA, Uddin MS, Ferdosh S, Adam A, Chowdhury AJK, Sarker MZI. Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: A review. Journal of Food and Drug Analysis 201;23(4):619-629
  88. Morris VB, Nimbalkar S, Younesi M, McClellan P, Akkus O. Mechanical Properties, Cytocompatibility and Manufacturability of Chitosan:PEGDA Hybrid-Gel Scaffolds by Stereolithography. Annals of Biomedical Engineering 2016
  89. Bansal J, Kedige SD, Anand S. Hyaluronic acid: a promising mediator for periodontal regeneration, Indian journal of dental research: Official Publication of Indian Society for Dental Research 2010;21(4):575-578 https://doi.org/10.4103/0970-9290.74232
  90. Xu X, Jha AK, Harrington DA, Farach-Carson MC, Jia X. Hyaluronic Acid-Based Hydrogels: from a Natural Polysaccharide to Complex Networks. Soft matter 2012;8(12):3280-3294 https://doi.org/10.1039/c2sm06463d
  91. Pescosolido L, Schuurman W, Malda J, Matricardi P, Alhaique F, Coviello T, et al. Hyaluronic acid and dextran-based semi-IPN hydrogels as biomaterials for bioprinting. Biomacromolecules 2011; 12(5):1831-1838 https://doi.org/10.1021/bm200178w
  92. Saxena V, Kim M, Keah NM, Neuwirth AL, Stoeckl BD, Bickard K, et al. Anatomic Mesenchymal Stem Cell-Based Engineered Cartilage Constructs for Biologic Total Joint Replacement. Tissue engineering Part A 2016;22(3-4):386-395 https://doi.org/10.1089/ten.tea.2015.0384
  93. Hamman JH. Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Marine drugs 2010; 8(4):1305-1322 https://doi.org/10.3390/md8041305
  94. De Luca AC, Lacour SP, Raffoul W, Di Summa PG. Extracellular matrix components in peripheral nerve repair: how to affect neural cellular response and nerve regeneration?. Neural Regeneration Research 2014;9(22):1943-1948 https://doi.org/10.4103/1673-5374.145366
  95. Janmey PA, Winer JP, Weisel JW. Fibrin gels and their clinical and bioengineering applications. Journal of The Royal Society Interface 2009;6(30):1-10 https://doi.org/10.1098/rsif.2008.0327
  96. Rajangam T, An SSA. Fibrinogen and fibrin based micro and nano scaffolds incorporated with drugs, proteins, cells and genes for therapeutic biomedical applications. International Journal of Nanomedicine 2013;8:3641-3662
  97. Skardal A, Mack D, Kapetanovic E, Atala A, Jackson JD, Yoo J, et al. Bioprinted Amniotic Fluid-Derived Stem Cells Accelerate Healing of Large Skin Wounds. Stem Cells Translational Medicine 2012;1(11):792-802 https://doi.org/10.5966/sctm.2012-0088
  98. Daniela FDC, Andreas B, Michael W, Jorg J, Sabine N, Wilhelm J-D, et al. Three-dimensional printing of stem cell-laden hydrogels submerged in a hydrophobic high-density fluid. Biofabrication 2013;5(1):015003
  99. Ahearne M. Introduction to cell-hydrogel mechanosensing. Interface Focus 2014;4(2)
  100. Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 2010;31(21):5536-5544 https://doi.org/10.1016/j.biomaterials.2010.03.064
  101. Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 2015;73:254-271 https://doi.org/10.1016/j.biomaterials.2015.08.045
  102. Bertassoni LE, Cardoso JC, Manoharan V, Cristino AL, Bhise NS, Araujo WA, et al. Direct-write Bioprinting of Cell-laden Methacrylated Gelatin Hydrogels. Biofabrication 2014;6(2):024105-024105 https://doi.org/10.1088/1758-5082/6/2/024105
  103. Browning MB, Cosgriff-Hernandez E. Development of a biostable replacement for PEGDA hydrogels. Biomacromolecules 2012; 13(3):779-786 https://doi.org/10.1021/bm201707z
  104. Diramio JA, Kisaalita WS, Majetich GF, Shimkus JM. Poly (ethylene glycol) methacrylate/dimethacrylate hydrogels for controlled release of hydrophobic drugs. Biotechnology Progress 2005;21(4): 1281-1288 https://doi.org/10.1021/bp0495670
  105. Murphy SV, Skardal A, Atala A. Evaluation of hydrogels for bioprinting applications Journal of Biomedical Materials Research Part A 2013;101(1):272-284
  106. Michael S, Sorg H, Peck CT, Koch L, Deiwick A, Chichkov B, et al. Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PloS one 2013;8(3):e57741 https://doi.org/10.1371/journal.pone.0057741
  107. Inzana JA, Olvera D, Fuller SM, Kelly JP, Graeve OA, Schwarz EM, et al. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 2014;35(13): 4026-34 https://doi.org/10.1016/j.biomaterials.2014.01.064
  108. Lee V, Singh G, Trasatti JP, Bjornsson C, Xu X, Tran TN, et al. Design and fabrication of human skin by three-dimensional bioprinting, Tissue Engineering Part C: Methods 2013;20(6):473-484 https://doi.org/10.1089/ten.tec.2013.0335
  109. Smith CM, Stone AL, Parkhill RL, Stewart RL, Simpkins MW, Kachurin AM, et al. Three-dimensional bioassembly tool for generating viable tissue-engineered constructs. Tissue engineering 2004;10(9-10):1566-1576 https://doi.org/10.1089/ten.2004.10.1566
  110. Wu Z, Su X, Xu Y, Kong B, Sun W, Mi S. Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation. Scientific Reports 2016;6:24474 https://doi.org/10.1038/srep24474
  111. Duan B, Hockaday LA, Kang KH, Butcher JT. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. Journal of Biomedical Materials Research Part A 2013;101(5): 1255-1264
  112. Yan Y, Wang X, Xiong Z, Liu H, Liu F, Lin F, et al. Direct construction of a three-dimensional structure with cells and hydrogel. Journal of Bioactive and Compatible Polymers 2005;20(3):259-269 https://doi.org/10.1177/0883911505053658
  113. Catros S, Guillemot F, Nandakumar A, Ziane S, Moroni L, Habibovic P, et al. Layer-by-layer tissue microfabrication supports cell proliferation in vitro and in vivo, Tissue engineering Part C. Methods 2012;18(1):62-70 https://doi.org/10.1089/ten.tec.2011.0382
  114. Guillotin B, Souquet A, Catros S, Duocastella M, Pippenger B, Bellance S, et al. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 2010; 31(28):7250-7256 https://doi.org/10.1016/j.biomaterials.2010.05.055
  115. Arai K, Iwanaga S, Toda H, Genci C, Nishiyama Y, Nakamura M. Three-dimensional inkjet biofabrication based on designed images. Biofabrication 2011;3(3):034113 https://doi.org/10.1088/1758-5082/3/3/034113
  116. Xu T, Zhao W, Zhu JM, Albanna MZ, Yoo JJ, Atala A. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials 2013;34(1):130- 139 https://doi.org/10.1016/j.biomaterials.2012.09.035
  117. Gaetani R, Doevendans PA, Metz CH, Alblas J, Messina E, Giacomello A, et al. Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells, Biomaterials 2012; 33(6):1782-1790 https://doi.org/10.1016/j.biomaterials.2011.11.003
  118. Song SJ, Choi J, Park YD, Hong S, Lee JJ, Ahn CB, et al. Sodium Alginate Hydrogel-Based Bioprinting Using a Novel Multinozzle Bioprinting System. Artificial Organs 2011;35(11):1132-1136 https://doi.org/10.1111/j.1525-1594.2011.01377.x
  119. Zhang Y, Yu Y, Chen H, Ozbolat IT. Characterization of printable cellular micro-fluidic channels for tissue engineering. Biofabrication 2013;5(2):025004 https://doi.org/10.1088/1758-5082/5/2/025004
  120. Guillemot F, Souquet A, Catros S, Guillotin B, Lopez J, Faucon M, et al. High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomaterialia 2010;6(7):2494-500 https://doi.org/10.1016/j.actbio.2009.09.029
  121. Xu M, Wang X, Yan Y, Yao R, Ge Y. An cell-assembly derived physiological 3D model of the metabolic syndrome, based on adiposederived stromal cells and a gelatin/alginate/fibrinogen matrix. Biomaterials 2010;31(14):3868-3877 https://doi.org/10.1016/j.biomaterials.2010.01.111
  122. Schuurman W, Levett PA, Pot MW, Van Weeren PR, Dhert WJ, Hutmacher DW, et al. Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs. Macromolecular Bioscience 2013;13(5):551-561 https://doi.org/10.1002/mabi.201200471
  123. Duarte Campos DF, Blaeser A, Weber M, Jakel J, Neuss S, Jahnen- Dechent W, et al. Three-dimensional printing of stem cell-laden hydrogels submerged in a hydrophobic high-density fluid. Biofabrication 2013;5(1):015003
  124. Fedorovich NE, De Wijn JR, Verbout AJ, Alblas J, Dhert WJ. Threedimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing. Tissue Engineering Part A 2008; 14(1):127-133 https://doi.org/10.1089/ten.a.2007.0158
  125. Kopf M, Campos DF, Blaeser A, Sen KS, Fischer H. A tailored three-dimensionally printable agarose-collagen blend allows encapsulation, spreading, and attachment of human umbilical artery smooth muscle cells. Biofabrication 2016;8(2):025011 https://doi.org/10.1088/1758-5090/8/2/025001
  126. Hockaday LA, Kang KH, Colangelo NW, Cheung PY, Duan B, Malone E, et al. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication 2012;4(3):035005 https://doi.org/10.1088/1758-5082/4/3/035005
  127. Cui X, Breitenkamp K, Finn MG, Lotz M, D'Lima DD. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Engineering Part A 2012;18(11-12):1304-1312 https://doi.org/10.1089/ten.tea.2011.0543
  128. Kang LH, Armstrong PA, Lee LJ, Duan B, Kang KH, Butcher JT. Optimizing Photo-Encapsulation Viability of Heart Valve Cell Types in 3D Printable Composite Hydrogels. Annals of Biomedical Engineering 2016
  129. Pirlo RK, Wu P, Liu J, Ringeisen B. PLGA/hydrogel biopapers as a stackable substrate for printing HUVEC networks via BioLP. Biotechnology and Bioengineering 2012;109(1):262-273 https://doi.org/10.1002/bit.23295