1 |
Derby B. Bioprinting: inkjet printing proteins and hybrid cell-containing materials and structures. Journal of Materials Chemistry 2008;18(47):5717-5721
DOI
|
2 |
Tekin E, Smith PJ, Schubert US. Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter 2008;4(4):703-713
DOI
|
3 |
Pat Fi, Gantelius J, Svahn HA. 3D Bioprinting of Tissue/Organ Models, Angewandte Chemie 2016;55(15):4650-4665
DOI
|
4 |
Koch L, Deiwick A, Schlie S, Michael S, Gruene M, Coger V, et al. Skin tissue generation by laser cell printing. Biotechnology and Bioengineering 2012;109(7):1855-1863
DOI
|
5 |
Mandrycky C, Wang Z, Kim K, Kim DH. 3D bioprinting for engineering complex tissues. Biotechnology Advances;2015
|
6 |
Mandrycky C, Wang Z, Kim K, Kim DH. 3D bioprinting for engineering complex tissues. Biotechnology Advances 2016;34(4):422- 434
DOI
|
7 |
Khalil S, Sun W. Biopolymer deposition for freeform fabrication of hydrogel tissue constructs, Materials Science and Engineering: C 2007;27(3):469-478
DOI
|
8 |
Arcaute K, Mann B, Wicker R. Stereolithography of spatially controlled multi-material bioactive poly(ethylene glycol) scaffolds. Acta Biomaterialia 2010;6(3):1047-1054
DOI
|
9 |
Lin H, Zhang D, Alexander PG, Yang G, Tan J, Cheng AW, et al. Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture. Biomaterials 2013;34(2):331-339
DOI
|
10 |
Pereira RF, Bartolo PJ. 3D Photo-Fabrication for Tissue Engineering and Drug Delivery. Engineering 2015;1(1):090-112
DOI
|
11 |
Pescosolido L, Schuurman W, Malda J, Matricardi P, Alhaique F, Coviello T, et al. Hyaluronic acid and dextran-based semi-IPN hydrogels as biomaterials for bioprinting. Biomacromolecules 2011; 12(5):1831-1838
DOI
|
12 |
Morris VB, Nimbalkar S, Younesi M, McClellan P, Akkus O. Mechanical Properties, Cytocompatibility and Manufacturability of Chitosan:PEGDA Hybrid-Gel Scaffolds by Stereolithography. Annals of Biomedical Engineering 2016
|
13 |
Bansal J, Kedige SD, Anand S. Hyaluronic acid: a promising mediator for periodontal regeneration, Indian journal of dental research: Official Publication of Indian Society for Dental Research 2010;21(4):575-578
DOI
|
14 |
Xu X, Jha AK, Harrington DA, Farach-Carson MC, Jia X. Hyaluronic Acid-Based Hydrogels: from a Natural Polysaccharide to Complex Networks. Soft matter 2012;8(12):3280-3294
DOI
|
15 |
Saxena V, Kim M, Keah NM, Neuwirth AL, Stoeckl BD, Bickard K, et al. Anatomic Mesenchymal Stem Cell-Based Engineered Cartilage Constructs for Biologic Total Joint Replacement. Tissue engineering Part A 2016;22(3-4):386-395
DOI
|
16 |
Hamman JH. Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Marine drugs 2010; 8(4):1305-1322
DOI
|
17 |
De Luca AC, Lacour SP, Raffoul W, Di Summa PG. Extracellular matrix components in peripheral nerve repair: how to affect neural cellular response and nerve regeneration?. Neural Regeneration Research 2014;9(22):1943-1948
DOI
|
18 |
Janmey PA, Winer JP, Weisel JW. Fibrin gels and their clinical and bioengineering applications. Journal of The Royal Society Interface 2009;6(30):1-10
DOI
|
19 |
Rajangam T, An SSA. Fibrinogen and fibrin based micro and nano scaffolds incorporated with drugs, proteins, cells and genes for therapeutic biomedical applications. International Journal of Nanomedicine 2013;8:3641-3662
|
20 |
Melchels FP, Feijen J, Grijpma DW. A review on stereolithography and its applications in biomedical engineering. Biomaterials 2010; 31(24):6121-6130
DOI
|
21 |
Duan B, Hockaday LA, Kang KH, Butcher JT. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. Journal of Biomedical Materials Research Part A 2013;101 (5):1255-1264
|
22 |
Hong S, Song S-J, Lee JY, Jang H, Choi J, Sun K, et al. Cellular behavior in micropatterned hydrogels by bioprinting system depended on the cell types and cellular interaction. Journal of Bioscience and Bioengineering 2013;116(2):224-230
DOI
|
23 |
Virginie K, Fabien G, Isabelle A, Bertrand G, Sylvain M, Joelle A, et al. In vivo bioprinting for computer- and robotic-assisted medical intervention: preliminary study in mice. Biofabrication 2010;2(1): 014101
DOI
|
24 |
Cui X, Breitenkamp K, Finn M, Lotz M, D'Lima DD. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Engineering Part A 2012;18(11-12):1304-1312
DOI
|
25 |
Xu F, Sridharan B, Wang S, Gurkan UA, Syverud B, Demirci U. Embryonic stem cell bioprinting for uniform and controlled size embryoid body formation. Biomicrofluidics 2011;5(2):022207
DOI
|
26 |
Catros S, Guillotin B, Bacakova M, Fricain J-C, Guillemot F. Effect of laser energy, substrate film thickness and bioink viscosity on viability of endothelial cells printed by Laser-Assisted Bioprinting. Applied Surface Science 2011;257(12):5142-5147
DOI
|
27 |
Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 2010;31(21):5536-5544
DOI
|
28 |
Skardal A, Mack D, Kapetanovic E, Atala A, Jackson JD, Yoo J, et al. Bioprinted Amniotic Fluid-Derived Stem Cells Accelerate Healing of Large Skin Wounds. Stem Cells Translational Medicine 2012;1(11):792-802
DOI
|
29 |
Daniela FDC, Andreas B, Michael W, Jorg J, Sabine N, Wilhelm J-D, et al. Three-dimensional printing of stem cell-laden hydrogels submerged in a hydrophobic high-density fluid. Biofabrication 2013;5(1):015003
|
30 |
Ahearne M. Introduction to cell-hydrogel mechanosensing. Interface Focus 2014;4(2)
|
31 |
Yue K, Trujillo-de Santiago G, Alvarez MM, Tamayol A, Annabi N, Khademhosseini A. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 2015;73:254-271
DOI
|
32 |
Bertassoni LE, Cardoso JC, Manoharan V, Cristino AL, Bhise NS, Araujo WA, et al. Direct-write Bioprinting of Cell-laden Methacrylated Gelatin Hydrogels. Biofabrication 2014;6(2):024105-024105
DOI
|
33 |
Browning MB, Cosgriff-Hernandez E. Development of a biostable replacement for PEGDA hydrogels. Biomacromolecules 2012; 13(3):779-786
DOI
|
34 |
Diramio JA, Kisaalita WS, Majetich GF, Shimkus JM. Poly (ethylene glycol) methacrylate/dimethacrylate hydrogels for controlled release of hydrophobic drugs. Biotechnology Progress 2005;21(4): 1281-1288
DOI
|
35 |
Murphy SV, Skardal A, Atala A. Evaluation of hydrogels for bioprinting applications Journal of Biomedical Materials Research Part A 2013;101(1):272-284
|
36 |
Smith CM, Stone AL, Parkhill RL, Stewart RL, Simpkins MW, Kachurin AM, et al. Three-dimensional bioassembly tool for generating viable tissue-engineered constructs. Tissue engineering 2004;10(9-10):1566-1576
DOI
|
37 |
Michael S, Sorg H, Peck CT, Koch L, Deiwick A, Chichkov B, et al. Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PloS one 2013;8(3):e57741
DOI
|
38 |
Inzana JA, Olvera D, Fuller SM, Kelly JP, Graeve OA, Schwarz EM, et al. 3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration. Biomaterials 2014;35(13): 4026-34
DOI
|
39 |
Lee V, Singh G, Trasatti JP, Bjornsson C, Xu X, Tran TN, et al. Design and fabrication of human skin by three-dimensional bioprinting, Tissue Engineering Part C: Methods 2013;20(6):473-484
DOI
|
40 |
Wu Z, Su X, Xu Y, Kong B, Sun W, Mi S. Bioprinting three-dimensional cell-laden tissue constructs with controllable degradation. Scientific Reports 2016;6:24474
DOI
|
41 |
Duan B, Hockaday LA, Kang KH, Butcher JT. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. Journal of Biomedical Materials Research Part A 2013;101(5): 1255-1264
|
42 |
Yan Y, Wang X, Xiong Z, Liu H, Liu F, Lin F, et al. Direct construction of a three-dimensional structure with cells and hydrogel. Journal of Bioactive and Compatible Polymers 2005;20(3):259-269
DOI
|
43 |
Catros S, Guillemot F, Nandakumar A, Ziane S, Moroni L, Habibovic P, et al. Layer-by-layer tissue microfabrication supports cell proliferation in vitro and in vivo, Tissue engineering Part C. Methods 2012;18(1):62-70
DOI
|
44 |
Farzaneh D, Yin Y, Yahui Z, Aribet MDJ, Edward AS, Ibrahim TO. In vitro evaluation of carbon-nanotube-reinforced bioprintable vascular conduits. Nanotechnology 2014;25(14):145101
DOI
|
45 |
Sylvain C, Jean-Christophe F, Bertrand G, Benjamin P, Reine B, Murielle R, et al. Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite. Biofabrication 2011;3(2):025001
DOI
|
46 |
Michael S, Sorg H, Peck C-T, Koch L, Deiwick A, Chichkov B, et al. Tissue Engineered Skin Substitutes Created by Laser-Assisted Bioprinting Form Skin-Like Structures in the Dorsal Skin Fold Chamber in Mice. PloS one 2013;8(3):e57741
DOI
|
47 |
Gruene M, Pflaum M, Deiwick A, Koch L, Schlie S, Unger C, et al. Adipogenic differentiation of laser-printed 3D tissue grafts consisting of human adipose-derived stem cells. Biofabrication 2011;3(1): 015005
DOI
|
48 |
Duan B, Hockaday LA, Kang KH, Butcher JT. 3D Bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. Journal of Biomedical Materials Research Part A 2013;101A (5):1255-1264
DOI
|
49 |
Miller JS, Stevens KR, Yang MT, Baker BM, Nguyen D-HT, Cohen DM, et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nature materials 2012;11(9):768-774
DOI
|
50 |
Kolesky DB, Truby RL, Gladman AS, BusbeeTA, Homan KA, Lewis JA. 3D Bioprinting of Vascularized, Heterogeneous Cell- Laden Tissue Constructs, Advanced materials 2014;26(19):3124- 3130
DOI
|
51 |
Khalil S, Sun W. Bioprinting endothelial cells with alginate for 3D tissue constructs. Journal of Biomechanical Engineering 2009; 131(11):111002
DOI
|
52 |
Gaetani R, Doevendans PA, Metz CH, Alblas J, Messina E, Giacomello A, et al. Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells, Biomaterials 2012; 33(6):1782-1790
DOI
|
53 |
Guillotin B, Souquet A, Catros S, Duocastella M, Pippenger B, Bellance S, et al. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 2010; 31(28):7250-7256
DOI
|
54 |
Arai K, Iwanaga S, Toda H, Genci C, Nishiyama Y, Nakamura M. Three-dimensional inkjet biofabrication based on designed images. Biofabrication 2011;3(3):034113
DOI
|
55 |
Xu T, Zhao W, Zhu JM, Albanna MZ, Yoo JJ, Atala A. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials 2013;34(1):130- 139
DOI
|
56 |
Song SJ, Choi J, Park YD, Hong S, Lee JJ, Ahn CB, et al. Sodium Alginate Hydrogel-Based Bioprinting Using a Novel Multinozzle Bioprinting System. Artificial Organs 2011;35(11):1132-1136
DOI
|
57 |
Zhang Y, Yu Y, Chen H, Ozbolat IT. Characterization of printable cellular micro-fluidic channels for tissue engineering. Biofabrication 2013;5(2):025004
DOI
|
58 |
Guillemot F, Souquet A, Catros S, Guillotin B, Lopez J, Faucon M, et al. High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomaterialia 2010;6(7):2494-500
DOI
|
59 |
Xu M, Wang X, Yan Y, Yao R, Ge Y. An cell-assembly derived physiological 3D model of the metabolic syndrome, based on adiposederived stromal cells and a gelatin/alginate/fibrinogen matrix. Biomaterials 2010;31(14):3868-3877
DOI
|
60 |
Loozen LD, Wegman F, Oner FC, Dhert WJA, Alblas J. Porous bioprinted constructs in BMP-2 non-viral gene therapy for bone tissue engineering, Journal of Materials Chemistry B 2013;1(48): 6619-6626
DOI
|
61 |
Kopf M, Campos DF, Blaeser A, Sen KS, Fischer H. A tailored three-dimensionally printable agarose-collagen blend allows encapsulation, spreading, and attachment of human umbilical artery smooth muscle cells. Biofabrication 2016;8(2):025011
DOI
|
62 |
Schuurman W, Levett PA, Pot MW, Van Weeren PR, Dhert WJ, Hutmacher DW, et al. Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs. Macromolecular Bioscience 2013;13(5):551-561
DOI
|
63 |
Duarte Campos DF, Blaeser A, Weber M, Jakel J, Neuss S, Jahnen- Dechent W, et al. Three-dimensional printing of stem cell-laden hydrogels submerged in a hydrophobic high-density fluid. Biofabrication 2013;5(1):015003
|
64 |
Fedorovich NE, De Wijn JR, Verbout AJ, Alblas J, Dhert WJ. Threedimensional fiber deposition of cell-laden, viable, patterned constructs for bone tissue printing. Tissue Engineering Part A 2008; 14(1):127-133
DOI
|
65 |
Hockaday LA, Kang KH, Colangelo NW, Cheung PY, Duan B, Malone E, et al. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication 2012;4(3):035005
DOI
|
66 |
Cui X, Breitenkamp K, Finn MG, Lotz M, D'Lima DD. Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Engineering Part A 2012;18(11-12):1304-1312
DOI
|
67 |
Kang LH, Armstrong PA, Lee LJ, Duan B, Kang KH, Butcher JT. Optimizing Photo-Encapsulation Viability of Heart Valve Cell Types in 3D Printable Composite Hydrogels. Annals of Biomedical Engineering 2016
|
68 |
Pirlo RK, Wu P, Liu J, Ringeisen B. PLGA/hydrogel biopapers as a stackable substrate for printing HUVEC networks via BioLP. Biotechnology and Bioengineering 2012;109(1):262-273
DOI
|
69 |
Christopher MO, Francoise M, Gabor F, Cheryl MH. Biofabrication and testing of a fully cellular nerve graft. Biofabrication 2013; 5(4): 045007
DOI
|
70 |
Jetze V, Benjamin P, Thijs JB, Jelle B, Wouter JAD, Ferry PWM, et al. Biofabrication of multi-material anatomically shaped tissue constructs. Biofabrication 2013;5(3):035007
DOI
|
71 |
Tyler KM, Morgan B, Young-Joon S, Hyun-Wook K, Sang Jin L, James JY, et al. A 3D bioprinted complex structure for engineering the muscle-tendon unit. Biofabrication 2015;7(3):035003
DOI
|
72 |
Ting Z, Karen Chang Y, Liliang O, Wei S. Mechanical characterization of bioprinted in vitro soft tissue models. Biofabrication 2013;5(4):045010
DOI
|
73 |
Wang Z, Abdulla R, Parker B, Samanipour R, Ghosh S, Kim K. A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication 2015;7(4):045009
DOI
|
74 |
Robert C, Kamal E, Honglu W, Wei S. Biofabrication of a three-dimensional liver micro-organ as an in vitro drug metabolism model. Biofabrication 2010;2(4):045004
DOI
|
75 |
Ker EDF, Nain AS, Weiss LE, Wang J ,Suhan J, Amon CH, et al. Bioprinting of growth factors onto aligned sub-micron fibrous scaffolds for simultaneous control of cell differentiation and alignment. Biomaterials 2011;32(32):8097-8107
DOI
|
76 |
Dennis SG, Trusk T, Richards D, Jia J, Tan Y, Mei Y, et al. Viability of Bioprinted Cellular Constructs Using a Three Dispenser Cartesian Printer. Journal of Visualized Experiments 2015;JoVE (103): 103791/53156
|
77 |
Chimene D, Lennox KK, Kaunas RR, Gaharwar AK. Advanced Bioinks for 3D Printing: A Materials Science Perspective. Annals of Biomedical Engineering 2016;44(6):2090-2102
DOI
|
78 |
Do A-V, Khorsand B, Geary SM, Salem AK. 3D Printing of Scaffolds for Tissue Regeneration Applications. Advanced Healthcare Materials 2015;4(12):1742-1762
DOI
|
79 |
Wust S, Muller R, Hofmann S. Controlled Positioning of Cells in Biomaterials-Approaches Towards 3D Tissue Printing. Journal of Functional Biomaterials 2011;2(3):119-154
DOI
|
80 |
Picout DR, Ross-Murphy SB. Rheology of biopolymer solutions and gels. The Scientific World Journal 2003;3:105-121
DOI
|
81 |
Wust S, Godla ME, Muller R, Hofmann S. Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomaterialia 2014;10(2):630-640
DOI
|
82 |
Warrenv J, Offenberger S, Toghiani H, Pittman CU Jr, Lacy TE, Kundu S. Effect of Temperature on the Shear-Thickening Behavior of Fumed Silica Suspensions. ACS Applied Materials & Interfaces 2015;7(33):18650-18661
DOI
|
83 |
Patteson AE, Gopinath A, Goulian M, Arratia PE. Running and tumbling with E coli in polymeric solutions. Scientific Reports 2015; 5:15761
DOI
|
84 |
Highley CB, Rodell CB, Burdick JA. Direct 3D Printing of Shear- Thinning Hydrogels into Self-Healing Hydrogels. Advanced Materials 2015;27(34):5075-5079
DOI
|
85 |
Black J. Biological performance of materials: fundamentals of biocompatibility, CRC Press;2005
|
86 |
Kim G, Ahn S, Kim Y, Cho Y, Chun W. Coaxial structured collagen- alginate scaffolds: fabrication, physical properties, and biomedical application for skin tissue regeneration. Journal of Materials Chemistry 2011;21(17):6165-6172
DOI
|
87 |
Hunt NC, Grover LM. Cell encapsulation using biopolymer gels for regenerative medicine. Biotechnology Letters 2010;32(6):733-742
DOI
|
88 |
Xu T, Binder KW, Albanna MZ, Dice D, Zhao W, Yoo JJ, et al. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication 2013;5(1):015001
DOI
|
89 |
Skardal A, Mack D, Kapetanovic E, Atala A, Jackson JD, Yoo J, et al. Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Translational Medicine 2012;1 (11):792
DOI
|
90 |
Bhattacharjee A, Bansal M. Collagen structure: the Madras triple helix and the current scenario. IUBMB Life 2005;57(3):161-172
DOI
|
91 |
Liu CZ, Xia ZD, Han ZW, Hulley PA, Triffitt JT, Czernuszka JT. Novel 3D collagen scaffolds fabricated by indirect printing technique for tissue engineering. Journal of Biomedical Materials Research Part B, Applied Biomaterials 2008;85(2):519-528
|
92 |
Lee W, Debasitis JC, Lee VK, Lee JH, Fischer K, Edminster K, et al. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials 2009;30(8):1587-1595
DOI
|
93 |
El-Sherbiny IM, Yacoub MH. Hydrogel scaffolds for tissue engineering: Progress and challenges. Global Cardiology Science & Practice 2013;2013(3):316-342
|
94 |
Palmer LC, Newcomb CJ, Kaltz SR, Spoerke ED, Stupp SI. Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel. Chemical Reviews 2008;108(11):4754-4783
DOI
|
95 |
Klein GT, Lu Y , Wang MY. 3D printing and neurosurgery--ready for prime time?, World neurosurgery 2013;80(3-4):233-235
DOI
|
96 |
Ventola CL. Medical Applications for 3D Printing: Current and Projected Uses, Pharmacy and Therapeutics 2014;39(10):704-711
|
97 |
Murphy SV, Atala A. 3D bioprinting of tissues and organs, Nat Biotech 2014;32(8):773-785
DOI
|
98 |
Langer R, Vacanti JP. Tissue engineering, Science 1993;260(5110): 920-926
DOI
|
99 |
Grover CN, Gwynne JH, Pugh N, Hamaia S, Farndale RW, Best SM, et al. Crosslinking and composition influence the surface properties, mechanical stiffness and cell reactivity of collagen-based films. Acta Biomaterialia 2012;8(8):3080-3090
DOI
|
100 |
Gasperini L, Mano JF, Reis RL. Natural polymers for the microencapsulation of cells, Journal of the Royal Society. Interface / the Royal Society 2014;11(100):20140817
DOI
|
101 |
Schubert C, Van Langeveld MC, Donoso LA. Innovations in 3D printing: a 3D overview from optics to organs, The British journal of ophthalmology 2014;98(2):159-161
DOI
|
102 |
Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations, European Spine Journal 2008;17(Suppl 4):467-479
DOI
|
103 |
O'Brien FJ. Biomaterials & scaffolds for tissue engineering, Materials Today 2011;14(3):88-95
DOI
|
104 |
Hendow EK, Guhmann P, Wright B, Sofokleous P, Parmar N, Day RM. Biomaterials for hollow organ tissue engineering, Fibrogenesis & Tissue Repair 2016;9(1):1-7
DOI
|
105 |
Ichioka S, Harii K, Nakahara M, Sato Y. An experimental comparison of hydrocolloid and alginate dressings, and the effect of calcium ions on the behaviour of alginate gel, Scandinavian journal of plastic and reconstructive surgery and hand surgery/Nordisk plastikkirurgisk forening and. Nordisk Klubb for Handkirurgi 1998;32 (3):311-316
DOI
|
106 |
Yan Y, Wang X, Pan Y, Liu H, Cheng J, Xiong Z, et al. Fabrication of viable tissue-engineered constructs with 3D cell-assembly technique. Biomaterials 2005;26(29):5864-5871
DOI
|
107 |
Wang X, Yan Y, Pan Y, Xiong Z, Liu H, Cheng J, et al. Generation of three-dimensional hepatocyte/gelatin structures with rapid prototyping system. Tissue Engineering 2006;12(1):83-90
DOI
|
108 |
Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Progress in Polymer Science 2012;37(1):106-126
DOI
|
109 |
Augst AD, Kong HJ, Mooney DJ. Alginate hydrogels as biomaterials, Macromolecular bioscience 2006;6(8):623-633
DOI
|
110 |
Wang L, Shelton RM, Cooper PR, Lawson M, Triffitt JT, Barralet JE. Evaluation of sodium alginate for bone marrow cell tissue engineering. Biomaterials 2003;24(20):3475-3481
DOI
|
111 |
Malda J, Visser J, Melchels FP, Jungst T, Hennink WE, Dhert WJ, et al. 25th anniversary article: Engineering hydrogels for biofabrication, Advanced Materials 2013;25(36):5011-28
DOI
|
112 |
El-Sherbiny IM, Yacoub MH. Hydrogel scaffolds for tissue engineering: Progress and challenges, Global Cardiology Science & Practice 2013;2013(3):316-342
|
113 |
Huang G, Wang L, Wang S , Han Y, Wu J, Zhang Q, et al. Engineering three-dimensional cell mechanical microenvironment with hydrogels. Biofabrication 2012;4(4):042001
DOI
|
114 |
Song H-HG, Park KM, Gerecht S. Hydrogels to model 3D in vitro microenvironment of tumor vascularization, Advanced drug delivery reviews 2014;79-80:19-29
DOI
|
115 |
Ravichandran R, Islam MM, Alarcon EI, Samanta A, Wang S, Lundstrom P, et al. Functionalised type-I collagen as a hydrogel building block for bio-orthogonal tissue engineering applications. Journal of Materials Chemistry B 2016;4(2):318-326
DOI
|
116 |
Lim G, Choi D, Richardson EB. 3-D Printing in Organ Transplantation. Hanyang Med Rev 2014;34:158-164
DOI
|
117 |
Kundu J, Shim JH, Jang J, Kim SW, Cho DW. An additive manufacturing- based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering. Journal of Tissue Engineering and Regenerative Medicine 2015;9(11):1286-1297
DOI
|
118 |
Vanderhooft JL, Mann BK, Prestwich GD. Synthesis and characterization of novel thiol-reactive poly (ethylene glycol) cross-linkers for extracellular-matrix-mimetic biomaterials. Biomacromolecules 2007;8(9):2883-2889
DOI
|
119 |
Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chemical Reviews 2001;101(7):1869-1879
DOI
|
120 |
Rowley JA, Mooney DJ. Alginate type and RGD density control myoblast phenotype. Journal of Biomedical Materials Research 2002;60(2):217-223
DOI
|
121 |
Calvert P. Materials science Printing cells. Science 2007;318(5848): 208-209
DOI
|
122 |
Koch L, Gruene M, Unger C, Chichkov B. Laser assisted cell printing. Current pharmaceutical biotechnology 2013;14(1):91-97
DOI
|
123 |
Koch L, Kuhn S, Sorg H, Gruene M, Schlie S, Gaebel R, et al. Laser printing of skin cells and human stem cells, Tissue engineering Part C. Methods 2010;16(5):847-854
DOI
|
124 |
Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nature biotechnology 2014;32(8):773-785
DOI
|
125 |
Badawy MEI, Rabea EI. A Biopolymer Chitosan and Its Derivatives as Promising Antimicrobial Agents against Plant Pathogens and Their Applications in Crop Protection. International Journal of Carbohydrate Chemistry 2011;(2011)
|
126 |
Grant GT, Morris ER, Rees DA, Smith PJ, Thom D. Biological interactions between polysaccharides and divalent cations: the eggbox model. FEBS Letters 1973;32(1):195-198
DOI
|
127 |
Pillai C, Paul W, Sharma CP. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in Polymer Science 2009;34(7):641-678
DOI
|
128 |
Talaat W, Haider M, Kawas SA, Kandil NG, Harding DR. Chitosan- Based Thermosensitive Hydrogel for Controlled Drug Delivery to the Temporomandibular Joint. The Journal of Craniofacial surgery 2016
|
129 |
Elgadir MA, Uddin MS, Ferdosh S, Adam A, Chowdhury AJK, Sarker MZI. Impact of chitosan composites and chitosan nanoparticle composites on various drug delivery systems: A review. Journal of Food and Drug Analysis 201;23(4):619-629
|