• Title/Summary/Keyword: Biomedical Applications

Search Result 752, Processing Time 0.021 seconds

Chemically Modified Graphenes: Chemistry and Applications

  • Park, Sung-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.8-8
    • /
    • 2011
  • During the last half decade, chemically modified graphene (CMG) has been studied in the wide range of applications, such as polymer composites, energy-related materials, sensors, 'paper'-like materials, field-effect transistors (FET), inks, actuators, and biomedical applications due to its excellent electrical, mechanical, and thermal properties. Chemical modification of graphene oxide, which is generated from graphite oxide, which is produced by simple oxidation of graphite, has been a promising route to achieve mass production of CMG platelets via their colloidal suspensions. Graphene oxide contains a range of reactive oxygen functional groups, which renders it a good candidate for use in the aforementioned applications (among others) through chemical functionalizations. In this presentation, I will discuss my recent research activities on the fundamental chemistry of graphite oxide, as well as novel applications based on CMGs. Topics will include the chemical structure of CMGs and colloidal suspensions of CMG platelets, as well as a wide variety of applications.

  • PDF

Development of portable single-beam acoustic tweezers for biomedical applications (생체응용을 위한 휴대용 단일빔 음향집게시스템 개발)

  • Lee, Junsu;Park, Yeon-Seong;Kim, Mi-Ji;Yoon, Changhan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.5
    • /
    • pp.435-440
    • /
    • 2020
  • Single-beam acoustic tweezers that are capable of manipulating micron-size particles in a non-contact manner have been used in many biological and biomedical applications. Current single-beam acoustic tweezer systems developed for in vitro experiments consist of a function generator and a power amplifier, thus the system is bulky and expensive. This configuration would not be suitable for in vivo and clinical applications. Thus, in this paper, we present a portable single-beam acoustic tweezer system and its performances of trapping and manipulating micron-size objects. The developed system consists of an Field Programmable Gate Array (FPGA) chip and two pulsers, and parameters such as center frequency and pulse duration were controlled by a Personal Computer (PC) via a USB (Universal Serial Bus) interface in real-time. It was shown that the system was capable of generating the transmitting pulse up to 20 MHz, and producing sufficient intensity to trap microparticles and cells. The performance of the system was evaluated by trapping and manipulating 40 ㎛ and 90 ㎛ in diameter polystyrene particles.

Augmented Reality to Localize Individual Organ in Surgical Procedure

  • Lee, Dongheon;Yi, Jin Wook;Hong, Jeeyoung;Chai, Young Jun;Kim, Hee Chan;Kong, Hyoun-Joong
    • Healthcare Informatics Research
    • /
    • v.24 no.4
    • /
    • pp.394-401
    • /
    • 2018
  • Objectives: Augmented reality (AR) technology has become rapidly available and is suitable for various medical applications since it can provide effective visualization of intricate anatomical structures inside the human body. This paper describes the procedure to develop an AR app with Unity3D and Vuforia software development kit and publish it to a smartphone for the localization of critical tissues or organs that cannot be seen easily by the naked eye during surgery. Methods: In this study, Vuforia version 6.5 integrated with the Unity Editor was installed on a desktop computer and configured to develop the Android AR app for the visualization of internal organs. Three-dimensional segmented human organs were extracted from a computerized tomography file using Seg3D software, and overlaid on a target body surface through the developed app with an artificial marker. Results: To aid beginners in using the AR technology for medical applications, a 3D model of the thyroid and surrounding structures was created from a thyroid cancer patient's DICOM file, and was visualized on the neck of a medical training mannequin through the developed AR app. The individual organs, including the thyroid, trachea, carotid artery, jugular vein, and esophagus were localized by the surgeon's Android smartphone. Conclusions: Vuforia software can help even researchers, students, or surgeons who do not possess computer vision expertise to easily develop an AR app in a user-friendly manner and use it to visualize and localize critical internal organs without incision. It could allow AR technology to be extensively utilized for various medical applications.

A Study on Miniaturization of Digital Controller for both Implantable Total Artificial Heart (TAH) and Ventricular Assist Device (VAD) using PSD302 (PSD302를 이용한 완전 이식형 인공심장 및 심실보조장치 제어용 디지탈 콘트롤러 소형화에 관한 연구)

  • Lee, J.H.;Choi, J.H.;Lee, J.J.;Kim, W.E.;Om, K.S.;Choi, J.S.;Ahn, J.M.;Choi, W.W.;Park, S.K.;Cho, Y.H.;Kim, H.C.;Min, B.G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.273-276
    • /
    • 1996
  • In the Total Artificial Heart (TAH) and Ventricular Assist Device (VAD), the size implanting the internal controller into human body is very serious problem. Hence, we need the size reduction of that controller for safe implantation. Using PSD302 chip for microcontroller-based applications, we could decrease the number of components in the digital control board and miniaturize the digital control board. We could replace a ROM, RAM, and a latch with that single chip, so the size of the newly developed board could be half the previous board.

  • PDF

Mechanical safety evaluation of ceramic ball head for total hip replacement using finite element method (인공고관절 전치환술에서 세라믹 볼 헤드의 기계적 안정성 평가를 위한 유한요소 해석)

  • Han, Sung-Min;Chu, Jun-Uk;Chun, Heoung-Jae;Kim, Jung-Sung;Choi, Kui-Won;Youn, In-Chan
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.6
    • /
    • pp.449-455
    • /
    • 2010
  • A ceramic articulating system in total hip replacement thought to be superior to metal-on-polyethylene due to its extremely low coefficient of friction and potential for high resistance to wear. But ceramic is brittle, which makes it mechanically and theoretically susceptible to fracture under certain mechanical conditions. In the current study, nine different models of ceramic ball heads were mechanically evaluated using 3D finite element(FE) analyses. It was found that the maximum stress in all ceramic models was lower than ceramic flexural strength, and it satisfied the requirements of the FDA Gaudience for artificial hip implant. Thus, ceramic ball head models introduced in the current study could be mechanically safe for clinical applications.

Diffusion-Enhanced Modified Hemodialyzer

  • Lee, Kyung-Soo;Lee, Sa-Ram;Mun, Cho-Hae;Min, Byoung-Goo
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.4
    • /
    • pp.455-460
    • /
    • 2007
  • Flow mismatch between blood and dialysate is invariably encountered during conventional hemodialysis, and this deteriorates diffusive mass transfer. A modification of a conventional dialyzer was conceived to prevent this mismatch. The modified dialyzer includes two independent blood flow regions (central and peripheral regions), which were achieved by redesigning the dialyzer cap. Resultantly, the blood stream was divided into two concentric dialyzer regions. Solutes clearances obtained using the modified dialyzers were compared with those of conventional dialyzers. Solutes clearances by conventional dialyzers were uniform, but solutes clearances by modified dialyzers were found to be dependent on the simulated blood split into dialyzer central and peripheral regions. Maximal clearances using the modified dialyzer were improved by up to approximately 7.6% for urea and 7.3% for creatinine, as compared with those of conventional dialyzers. More optimizations are required for clinical applications, but the finding that blood flowrates through central and peripheral fiber bundles can be easily regulated is encouraging.

Measurement of Magnetic Flux and Induced Current in Magnetic Stimulation for Urinary Incontinence Treatment (요실금 치료용 자기 자극기의 자속밀도 및 유도전류 측정)

  • Han, Byung-Hee;Choi, Kyung-Moo;Cho, Min-Hyoung;Lee, Soo-Yeol
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.4
    • /
    • pp.318-326
    • /
    • 2009
  • A simple method for measuring magnetic flux and induced current in magnetic nerve stimulation for urinary incontinence treatment is proposed. Unlike electric nerve stimulation, direct measurement of the induced current in magnetic nerve stimulation is impossible. Since induced currents stimulate nerves or muscles in magnetic nerve stimulation, measuring induced current is very important in validating stimulation efficacy and securing safety. The magnetic flux measuring system is composed of 6 layers with pick-up coils of 7 by 7 in each layer, and the induced current measuring system is composed of 6 layers with 7 concentric circular coils in each layer. The proposed method can be used in the design or performance test of a magnetic nerve stimulator for many clinical applications such as urinary incontinence treatment, activation of peripheral nerves, and transcranial magnetic stimulation.

Biomedical Materials for Regenerating Bone Tissue Utilizing Marine Invertebrate (해양무척추동물을 활용한 골 조직 재생용 바이오 메디컬 소재)

  • Oh, Gun-Woo;Jung, Won-Kyo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.1
    • /
    • pp.1-15
    • /
    • 2015
  • Tissue engineering is an emerging, innovative technology to improve or replace the biological functions of damaged tissues and organs. Scaffolds are important materials for tissue engineering as they support cell attachment, migration, and differentiation. Marine sponges naturally contain scaffolds formed by extracellular matrix proteins (collagen and sponging) and strengthened by a siliceous or calcium carbonate skeleton. Coral skeletons are also derived naturally formed by essential calcium carbonate in the form of aragonite, and are similar to human bone. In addition, collagen extracted from jellyfish is a biosafe alternative to bovine and porcine collagen and gained attention as a potential source for tissue engineering. Moreover, cuttlefish bone is an excellent calcium source and can be used to generate bio-synthetic calcium phosphate. It has become a natural candidate for biomimetic scaffolds. This review describes the use of natural products derived from marine invertebrates for applications in bone tissue engineering based on studies from 2008 to 2014.

The Study of Dark Current of Amorphous Selenium Plate for Digital Radiography Applications (Digital Radiography용 amorphous selenium 시편의 누설전류에 관한 연구)

  • Kang, Y.S.;Kang, W.S.;Jung, S.H.;Park, S.K.;Nam, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.293-294
    • /
    • 1998
  • In this paper, the electric properties of amorphous selenium specimen has been investigated. Amorphous selenium was thermally evaporated on the glass plate which had been deposited onto the interface by aluminium as an electrode. On the surface of the amorphous selenium, the aluminium electrode was deposited again in order to make an unit cell for dark current measurement. The dark current was measured while applying the bias voltage across the selenium layer in the range of 0V-2500 Volts. The leakage property of the amorphous selenium was significantly low at even high voltage range so it has good advantage as a X-ray receptor for digital radiography. For further study, the C-V curves measurement according to thicker amorphous selenium layer.

  • PDF

Interpretation of HRV by the Coupled-Oscillating Cardiac Control System (가상 심장박동 발진기를 활용한 심박변이도 해석)

  • Jeung, Gyeo-Wun;Kim, Jeong-Hwan;Lee, Jun-Woo;Kim, Kyeong-Seop
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.3
    • /
    • pp.493-498
    • /
    • 2016
  • Heart Rate Variability (HRV) represents beat-to-beat fluctuations of R-R intervals in Electrocardiogram (ECG). On of the clinical applications of HRV is to assess the mental-stress state by evaluating its power spectral density distribution. This study aims at finding new discriminative role of the coupled-oscillating coupling constants, Cs and Cp in the Integral Pulse Frequency Modulation (IPFM) model. Based on comparing with power spectral density of HRV in terms of the relative ratio of the low and high-frequency power component, we can conclude the fact that the coupling parameters Cs and Cp can replace the role of HRV power spectrum interpretation for judging the mental-stress state.