DOI QR코드

DOI QR Code

Development of portable single-beam acoustic tweezers for biomedical applications

생체응용을 위한 휴대용 단일빔 음향집게시스템 개발

  • 이준수 (서강대학교 전자공학과) ;
  • 박연성 (인제대학교 의용공학부) ;
  • 김미지 (인제대학교 의용공학부) ;
  • 윤창한 (인제대학교 의용공학부)
  • Received : 2020.06.10
  • Accepted : 2020.07.28
  • Published : 2020.09.30

Abstract

Single-beam acoustic tweezers that are capable of manipulating micron-size particles in a non-contact manner have been used in many biological and biomedical applications. Current single-beam acoustic tweezer systems developed for in vitro experiments consist of a function generator and a power amplifier, thus the system is bulky and expensive. This configuration would not be suitable for in vivo and clinical applications. Thus, in this paper, we present a portable single-beam acoustic tweezer system and its performances of trapping and manipulating micron-size objects. The developed system consists of an Field Programmable Gate Array (FPGA) chip and two pulsers, and parameters such as center frequency and pulse duration were controlled by a Personal Computer (PC) via a USB (Universal Serial Bus) interface in real-time. It was shown that the system was capable of generating the transmitting pulse up to 20 MHz, and producing sufficient intensity to trap microparticles and cells. The performance of the system was evaluated by trapping and manipulating 40 ㎛ and 90 ㎛ in diameter polystyrene particles.

음향집게는 마이크론 단위의 미세입자를 비접촉 방식으로 조작할 수 있어 다양한 생체공학 응용에 사용되고 있다. 현재까지 음향집게는 in vitro 실험을 목적으로 개발되어 임의파형 발생기와 전력 증폭기와 같은 부피가 큰 고가의 장비를 사용하여 구현하였다. 따라서 이러한 시스템은 이동이 불편하여 한정된 공간에서만 사용이 가능하기 때문에 향후 in vivo 및 임상 실험에 적합하지 않은 구조를 가진다. 따라서 본 논문에서는 이동이 가능한 휴대용 음향집게를 개발하고 그 성능을 평가하였다. 개발한 휴대용 음향집게 시스템은 하나의 Field Programmable Gate Array(FPGA)와 2 개의 펄서로 구현되었으며, Universal Serial Bus(USB) 통신을 이용하여 Personal Computer(PC)에서 송신 주파수 및 펄스 길이 등을 실시간으로 조절이 가능하도록 설계하였다. 개발한 시스템은 최대 20 MHz의 중심 주파수 까지 송신이 가능하며, 미세입자 및 세포를 포획할 수 있는 충분한 힘을 생성할 수 있었다. 개발한 시스템의 성능을 평가하기 위하여 40 ㎛와 90 ㎛ 크기의 폴리스티렌 입자를 포획 및 조정하였다.

Keywords

References

  1. A. Folch and M. Toner, "Microengineering of cellular interactions," Annu. Rev. Biomed. Eng. 2, 56-227 (2000).
  2. H. Andersson and A. van den Berg, "Microtechnologies and nanotechnologies for single-cell analysis," Current Opinion Biotechnol. 15, 44-49 (2004). https://doi.org/10.1016/j.copbio.2004.01.004
  3. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986). https://doi.org/10.1364/OL.11.000288
  4. A. Ashkin and J. M. Dziedzic, "Optical trapping and manipulation of viruses and bacteria," Science, 235, 1517-1520 (1987). https://doi.org/10.1126/science.3547653
  5. H. Zhang and I. K-K. Liu, "Optical tweezers for single cells", J. R. Soc. Interface, 5, 671-690 (2008). https://doi.org/10.1098/rsif.2008.0052
  6. A. Ozcelik, J. Rufo, F. Guo, Y. Gu, P. Li, J. Lata, and T. J. Huang, "Acoustic tweezers for the life sciences," Nature Methods, 15, 1021-1028 (2018). https://doi.org/10.1038/s41592-018-0222-9
  7. A. R. Bausch, W. Moller, and E. Sackmann, "Measurement of local viscoelasticity and forces in living cells by magnetic tweezers," Biophys. J. 76, 573-579 (1999). https://doi.org/10.1016/S0006-3495(99)77225-5
  8. J. W. Lee, K. L. Ha, and K. K. Shung, "A theoretical study of the feasibility of acoustical tweezers: Ray acoustic approach," J. Acoust. Soc. Am. 117, 3273-3280 (2005). https://doi.org/10.1121/1.1886387
  9. C. Yoon, B. J. Kang, C. Lee, H. H. Kim, and K. K. Shung, "Multi-particle trapping and manipulation by a high-frequency array transducer," Appl. Phys. Lett. 105, 214103 (2014). https://doi.org/10.1063/1.4902923
  10. H. G. Lim, H. H. Kim, C. Yoon, and K. Kirk Shung, "A one-sided acoustic trap for cell immobilization using 30-MHz array transducer," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 67, 167-172 (2020). https://doi.org/10.1109/TUFFC.2019.2940239
  11. H. G. Lim and K. K. Shung, "Quantification of intererythrocyte forces with ultra-high frequency (410 MHz) single beam acoustic tweezer," Annals of Biomedical Engineering, 45, 2174-2183 (2017). https://doi.org/10.1007/s10439-017-1863-z
  12. S. Youn, J. W. Choi, J. Lee, J. Kim, I. H. Yang, J. H. Chang, H. C. Kim, and J. Y. Hwang, "Acoustic trapping technique for studying calcium response of a suspended breast cancer cell: determination of its invasion potentials," IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 66, 737-746 (2019). https://doi.org/10.1109/TUFFC.2019.2894662