• Title/Summary/Keyword: Biomaterial science

Search Result 395, Processing Time 0.022 seconds

Review of the developmental trend of implant surface modification using organic biomaterials (생체활성 유기물로 표면이 개질된 임플란트 개발 추이 분석 연구)

  • Hwang, Sung-Taek;Han, In-Ho;Huh, Jung-Bo;Kang, Jeong-Kyung;Ryu, Jae-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.3
    • /
    • pp.254-262
    • /
    • 2011
  • Purpose: This study aims to evaluate and prospect for current research trend and developmental perspectives via analyzing recent biomaterial coated-implants study. Materials and methods: To investigate each subject respectively, several biomaterials that are using for implant surface coating were set as 'keywords'. By these keywords, major research groups in each subject were chosen, and research trend of them was analyzed. Trend of In vivo studies that examined selected biomaterials were analyzed to evaluate commercial potential. Results: The collagen research accounted for 40% of total implant study, which was the highest, and fibronectin, BMPs (bone morphogenetic proteins) and RGD (Arg-Gly-Asp) peptides followed, which were ranked in descending order. Furthermore, figures of all four research subjects were also increased with time, especially a sharp increase in RGD research. According to the results of major research group, collagen that was combined with other organic and inorganic biomaterials was mostly examined, rather than using collagen only. Major research groups investigating BMPs mostly focused on rhBMP-2. In animal studies, collagen was used as resorbable membrane in guided bone regeneration (GBR) or drug carrier, while BMPs were used with bone graft materials or coating material for titanium implant surface. Conclusion: There is not consistency of results even in identical subjects research field. Many studies are ongoing to optimize combination between mechanical surface treatment and biomaterials such as extracellular matrix component and growth factors.

Electrospun Silk Nano-Fiber Combined with Nano-Hydoxyapatite Graft for the Rabbit Calvarial Model (토끼 두개골 결손부에서 전기 방사된 나노실크-수산화인회석 복합체를 이용한 골재생 효과에 대한 연구)

  • Kye, Jun-Young;Kim, Seong-Gon;Kim, Min-Keun;Kwon, Kwang-Jun;Park, Young-Wook;Kim, Jwa-Young;Lee, Min-Jung;Park, Young-Hwan
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.4
    • /
    • pp.293-298
    • /
    • 2010
  • Purpose: The objective of the present study was to determine the capability of electrospun silk fibroin as a biomaterial template for bone formation when mixed with nano-hydoxyapatite in vivo. Materials and Methods: Ten New Zealand white rabbits were used for this study and bilateral round shaped defects were formed in the parietal bone (diameter: 8.0 mm). The electrospun silk fibroin was coated by nano-hydroxyapatite and grafted into the right parietal bone (experimental group). The left side (control group) did not receive a graft. The animals were sacrificed at 6 weeks and 12 weeks, humanly. The microcomputerized tomogram (${\mu}CT$) was taken for each specimen. Subsequently, they were undergone decalcification and stained for the histological analysis. Results: The average value of all measured variables was higher in the experimental group than in the control at 6 weeks after the operation. BMC in the experimental group at 6 weeks after operation was $48.94{\pm}19.25$ and that in the control was $26.17{\pm}16.40$ (P = 0.027). BMD in the experimental group at 6 weeks after operation was $324.59{\pm}165.24$ and that in the control was $173.03{\pm}120.30$ (P = 0.044). TMC in the experimental group at 6 weeks after operation was $19.50{\pm}6.00$ and that in the control was $10.52{\pm}6.20$ (P = 0.011). TMD in the experimental group at 6 weeks after operation was $508.88{\pm}297.57$ and that in the control was $273.54{\pm}175.91$ (P = 0.06). Gross image of both groups showed higher calcification area at 12 weeks than them in 6 weeks. The average value of ${\mu}CT$ analysis was higher at 12 weeks than that in 6 weeks in both groups. BMC in the experimental group at 12 weeks after operation was $51.21{\pm}8.81$ and that in the control was $33.47{\pm}11.13$ (P = 0.010). BMD in the experimental group at 12 weeks after operation was $323.39{\pm}21.54$ and that in the control was $197.75{\pm}76.23$ (P = 0.012). TMC in the experimental group at 12 weeks after operation was $21.44{\pm}5.30$ and that in the control was $13.31{\pm}4.17$ (P = 0.008). TMD in the experimental group at 12 weeks after operation was $524.47{\pm}19.37$ and that in the control was $299.60{\pm}136.20$ (P = 0.016). Conclusion: The rabbit calvarial defect could be successfully repaired by electrospun silk nano-fiber combined with nano-hydroxyapatite.

Anti-Inflammmatiry Effects of Nerium indicum Ethanol Extracts through Suppression of NF-kappaB Activation (NF-κB 활성 저해를 통한 협죽도 에탄올 추출물의 항염증 효능)

  • Kim, Tae-Hwan;Ko, Seog-Soon;Park, Cheol;Park, Sang-Eun;Hong, Sang-Hoon;Kim, Byung-Woo;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.20 no.8
    • /
    • pp.1221-1229
    • /
    • 2010
  • Nerium indicum, an India-Pakistan-originated shrub belonging to the oleander family, is reported to possess many pharmacological activities including cardiac muscle stimulation, and anti-diabetes, anti-angiogenesis, anti-cancer and neuro-protective activities. However, the anti-inflammatory properties of N. indicum were unclear. In this study, we investigated the effects of ethanol extract of the N. indicum leaf and stem (ENIL and ENIS) on the expression of anti-inflammatory mediators in U937 human pre-monocytic cell models. In U937 cells stimulated with phorbol 12-myristate-13-acetate (PMA), pre-treatment with ENIS significantly inhibited the expression of both cyclooxygenase-2 (COX-2) mRNA and protein, which are associated with inhibition of the release of prostaglandin $E_2\;(PGE_2)$, whereas the inhibitory effects appeared weakly in ENIL. Moreover, ENIS significantly attenuated PMA-induced IkappaB ($I{\kappa}B$) degradation and suppressed elevated nuclear factor kappa B (NF-${\kappa}B$) nuclear translocation. Taken together, these findings provide important new insights that N. indicum exhibits anti-inflammatory properties by suppressing the transcription of pro-inflammatory cytokine genes through the NF-kB signaling pathway.

Osteoblastogenic Activity of Locusta migratoria Ethanol Extracts on Pre-Osteoblastic MG-63 Cells (풀무치 에탄올 추출물이 MG-63 조골세포 분화에 미치는 영향)

  • Baek, Minhee;Seo, Minchul;Lee, Joon Ha;Kim, In-Woo;Kim, Mi-Ae;Hwang, Jae-Sam
    • Journal of Life Science
    • /
    • v.28 no.12
    • /
    • pp.1448-1454
    • /
    • 2018
  • Insects have been investigated as a novel source of food and biomaterial in several recent studies. However, their osteoblastogenic cell activity has not been sufficiently researched and so, to investigate the potential of this natural material for promoting osteoblastogenesis, we studied the activity of Locusta migratoria ethanol extract (LME) on MG-63 pre-osteoblast cells. The cytotoxicity and proliferation effects of LME on MG-63 cells were measured by MTS assay, and there was no cytotoxicity up to $1,000{\mu}g/ml$. With LME treatment of 500 and $1,000{\mu}g/ml$ for 48 hr, cell proliferation increased to 105% and 116% versus control, respectively. The osteoblastogenic activity of the LME was measured through alkaline phosphatase (ALP) staining at three and five days. As a result, both 500 and $1,000{\mu}g/ml$ LME concentrations were seen to increase ALP activity by more than three times compared with control at three and five days. In addition, the expression level of the osteogenic markers ALP and RUNX2 was markedly increased after LME treatment. These results demonstrate that Locusta migratoria ethanol extract promotes osteoblastogenesis as evidenced by the increased osteogenic markers and suggest that LME may be a potential agent for bone formation and osteoporosis prevention.

Nutrition Components and Physicochemical Properties of Acer termentosum Maxim. Leaf (벌나무 잎의 영양성분 및 이화학 특성)

  • Park, Sung Jin;Shin, Eon Hwan;Kim, Dong Ho;Rha, Young-Ah
    • Culinary science and hospitality research
    • /
    • v.22 no.8
    • /
    • pp.27-38
    • /
    • 2016
  • This study examined the nutrient components and physicochemical properties of Acer termentosum Maxim. leaf as a natural health food source. To accomplish this purpose, the general and antioxidative contents of Acer termentosum Maxim leaf were measured. Total contents of carbohydrates, crude protein, crude lipid, and ash were 53.6%, 24.3%, 3.5%, and 3.5%, respectively. Caloric content of Acer termentosum Maxim was 246.5 kcal, while total dietary fiber was 46.7%. Regarding mineral contents, K was the most abundant mineral, followed by Ca, Mg, and P. Therefore, Acer termentosum Maxim is an alkali material. Total phenol contents of the 70% ethanolic extracts of Acer termentosum Maxim was $116.35{\pm}1.4mg\;GAE/g$. Total flavonoid contents of the 70% ethanolic extracts were $20.3{\pm}1.23mg\;RE/g$. The antioxidative activities of Acer termentosum Maxim. were significantly increased in a dose dependent manner on DPPH(1,1-Diphenyl-2-picrylhydrazyl) radical scavenging, ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt) radical scavenging, FRAP (ferric reducing antioxidant power) activity, reducing power. It is expected that follow up study of Acer termentosum Maxim through developing processed food and evaluation of their functional properties would provide useful information as a source of functional foods.