• Title/Summary/Keyword: Biomass to Liquid

Search Result 219, Processing Time 0.033 seconds

Degradation Properties and Production of Fuels from Cellulose - Solvolysis - (셀룰로오스의 분해특성 및 연료물질 생성[II] - 용해분해 반응 -)

  • Lee, Jong-Jib;Lee, Byung-Hak
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.2
    • /
    • pp.159-169
    • /
    • 2005
  • Cellulose, consisted of 45 wt% in wood, is usable as fuels and heavy oil additives if depolymerized to monomer unit, because the chemical structures are similar to high octane materials found in gasoline. In this study, thermochemical degradation by solvolysis reaction of cellulose such as the effect of reaction temperature, reaction time and type of solvent on conversion yield and degradation products were investigated. It was found that the effectiveness of the solvent on the sovolysis reaction was as follows; acetone>n-butanol>tetralin. When acetone was used as a solvent, the highest cellulose conversion was observed to be 91.8% at 500$^{\circ}C$, 40min. Combustion heating value of liquid products from thermochemical conversion processes was in the range of 7,330${\sim}$7,410cal/g. The energy yield and mass yield in acetone-solvolysis of cellulose was as high as 66.8% and 37.0 g oil/100g raw material after 40min of reaction at 400$^{\circ}C$. Various aliphatic and aromatic compounds were detected in the cellulose solvolysis products. The major components of the solvolysis products, that could be used as fuel, were mesityl oxide, mesitylene, isophorone.

Laboratory Study on the Factors Affecting on Initial Anaerobic Biomass Development (혐기성 부착미생물의 초기성장에 미치는 영향인자에 관한 연구)

  • 허준무;박종안;손부순
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.1
    • /
    • pp.185-194
    • /
    • 1998
  • Laboratory-scale investigation into initial anaerobic biofilm development was carried out by circulating mixed liquor from a steady-state anaerobic reactor through silicone tubing and then rerurning the mixed liquor to the reactor. The wall of the silicone tubing was the surface upon which anaerobic biofilm accumulation or development was monitored. Methanogenic bacteria accumulation was monitored by F$_{420}$ fluorescence (picomoles F$_{420}$/cm$^{2}$) of the extracted biofilm material. Biofilm accumulation was measured by the increase in COD of the extracted material ($\mu $g COD/cm$^{2}$). Experiments were conducted for 25 days, and biofilm analyses were performed at 5 days intervals. The results indicated that the initial rates of methangen and anaerobic biofilm accumulation increased with increasing organic loading rate and higher initial rates were observed for 15 days than 15 day liquid HRT or SRT. When the initial rates were plotted against the corresponding mixed liquor volatile suspended solids the difference between the results at the two HRT's became much less significant. Thus, the concentration of mixed liquor volatile suspended solids was found to be a very important parameter affecting initial anaerobic biofilm development. The ratio of methanogens to anaerobic biofilm was also investigated. The results showed that the ratio remained constant through the 25 days of each experiment and for high organic loading rates. Based on the results of this research, a reduction, a reduction of start-up period of anaerobic fixed film reactors might be achieved by maintaining a high organic loading and a large concentration of anaerobic microorganisms in the mixed liquor during the start-up period.

  • PDF

Effect of Continual Application of Liquid Pig Manure on Malting Barley Growth and Soil Environment in Double Cropping System of Rice-Malting Barley (벼.맥주보리 작부체계에서 돈분액비 연용이 맥주보리 생육과 토양 환경에 미치는 영향)

  • Lee, Seong-Tae;Seo, Dong-Cheol;Kim, Eun-Seok;Song, Won-Doo;Lee, Won-Gyu;Heo, Jong-Soo;Lee, Young-Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.341-348
    • /
    • 2010
  • To investigate the effect of continual pre-plant application of liquid pig manure (LPM) on malting barley growth, quality and soil environment in double cropping system of rice and malting barley, the liquid pig manure was applied after harvesting rice and malting barley for 3 years. Field experiment was designed with non-fertilizer, chemical fertilizer (CF) recommended by soil testing, rice (LPM 50%+CF 50%)+malting barley (CF 100%), rice (LPM 50%+CF 50%)+malting barley (LPM 50%+CF 50%), rice (LPM 100%)+malting barley (CF 100%) and rice (LPM 100%)+malting barley (LPM 100%). By continuous application of LPM 100%, the contents of available $P_2O_5$ and exchangeable K in the soil were increased. The available $P_2O_5$ increased from 243 to 350 mg $kg^{-1}$ and exchangeable K was changed 0.31 to 0.44 $cmol_{c}\;kg^{-1}$. However, the contents of available $P_2O_5$ and exchangeable K were not significant changes in rice (LPM 50%+CF 50%)+malting barley (LPM 50%+CF 50%) plot. Bulk density of soil was not affected by application of LPM. The microbial density was high in order of bacteria > actinomycetes > fungi. The population of aerobic bacteria in rice (LPM 100%)+malting barley (LPM 100%) plot was higher than other plots. The ratio of aerobic bacteria/fungi and biomass C content were the highest in rice (LPM 100%)+malting barley (LPM 100%) plot. The yield of malting barley was increased 22% by increasing culm length, panicle length, No. of panicle and 1,000 grains as 358 kg $10a^{-1}$ in rice (LPM 100%)+malting barley (LPM 100%) plot compared with 294 kg $10a^{-1}$ in rice (CF 100%)+malting barley (CF 100%) plot. The content of ${\beta}$-glucan was low by 4.5 and 4.4% in non-fertilizer and rice (CF 100%)+malting barley (CF 100%) plot, respectively. The content of crude protein was the lowest by 8.2% in non-fertilizer and rice (CF 100%)+malting barley (CF 100%) plot and the quality of malting barley was good as within 11%.

Separation Behavior of Paclitaxel and Its Semi-synthetic Precursor 10-Deacetylpaclitaxel from Plant Cell Cultures (식물세포배양으로부터 파클리탁셀 및 이의 반합성 전구체 10-디아세틸파클리탁셀의 분리 양상)

  • Lee, Chung-Gi;Kim, Jin-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.54 no.1
    • /
    • pp.89-93
    • /
    • 2016
  • In this study, we investigated the separation behavior of the anticancer agent paclitaxel and its semi-synthetic precursor 10-deacetylpaclitaxel (10-DAP) from plant cell cultures. As a result of sequential separation/purification performed by biomass extraction with solvent, liquid-liquid extraction, adsorbent treatment, hexane precipitation, and fractional precipitation, the adsorbent treatment was found to be the most effective in separating and recovering 10-DAP from paclitaxel. The optimal adsorbent type, crude extract/adsorbent ratio, and adsorbent treatment temperature were sylopute, 1:1.5 (w/w), and $20^{\circ}C$, respectively. The separation/recovery of 10-DAP from paclitaxel was 74.1% in adsorbent treatment process under optimal conditions.

In vitro micropropagation of water hyacinth (Eichhornia crassipes)

  • Suh, Eun-Jung;Park, Byoung-Mo;Han, Bong-Hee
    • Journal of Plant Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.505-510
    • /
    • 2010
  • This study was conducted to refine a micropropagation method of water hyacinth (Eichhornia crassipes) in vitro. When young shoots were cultured on media with various concentrations of BA or TDZ alone, LS medium containing $5.0\;mgl^{-1}$ BA was found favorable for shoot proliferation from young shoots with a mean of 4.2 shoots. Using BA together with IAA, more shoots were obtained on LS medium containing $5.0\;mgl^{-1}$ BA and $1.0\;mgl^{-1}$ IAA with a mean of 5.7 shoots. In liquid medium, number of shoots and fresh weight per explant increased significantly. The best shoot proliferation and increasing of fresh weight were achieved on LS liquid medium containing $5.0\;mgl^{-1}$ BA and $1.0\;mgl^{-1}$ IAA with 6.9 shoots and more than 4,000 mg fresh weight. Of the different concentrations of LS salt, double strength of LS medium provided the highest shoot proliferation with 7.3 shoots, and fresh weight with 5,539 mg per explant. Shoot proliferation on LS medium containing $50\;gl^{-1}$ sucrose had better results with 8.7 shoots and 5,979 mg per explant in fresh weight than other conditions. In conclusion, the optimal level for shoot proliferation and biomass increase of water hyacinth was attained with the application of the double strength of LS medium containing $5.0\;mgl^{-1}$ BA, $1.0\;mgl^{-1}$ IAA and $50\;gl^{-1}$ sucrose.

Application of Membranes for Biological Waste Gas Treatment Processes (생물학적 폐가스 처리공정 내 멤브레인 활용)

  • Lee, Sang-hun
    • Membrane Journal
    • /
    • v.31 no.5
    • /
    • pp.327-332
    • /
    • 2021
  • The use of membranes for MBRWG (Membrane Bioreactor for Waste Gas) treatment can provide highly selective separation of a waste gas stream followed by effective biological removal. MBRWG have several potential advantages, among which the most distinctive one is separation of gas and liquid phases at each side of membrane potentially allowing the optimal biomass control toward effective biodegradation of target gases as well as biofilm activation. This advantage becomes especially favorable for removal of hydrophobic toxic gases, such as xylene, by MBRWG systems, because the mass transfer, the toxicity, and thereby the biodegradation of hydrophobic gas treatment requires sensitive handling of liquid stream and water control near biofilm. Among various membranes for MBRWG treatment, PDMS-hollow fiber membranes provide the high gas mass transfer. Despite lower specific surface areas, capillary type membranes are also applied current MBRWG studies. In addition to the main application of membranes as biofilm supporter in MBRWG systems, there can be another application of membranes in a posterior process for removal of residual gases or dusts emitted from conventional biological waste gas treatment processes.

Correlation Analysis on $CO_2$ Emission and Cost of Energy Resources and Life Cycle Assessment (에너지자원의 이산화탄소 배출량과 비용의 상관관계 분석과 전과정평가)

  • Kim, Heetae;Kim, Eun Chul;Ahn, Tae Kyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.153-153
    • /
    • 2010
  • The world is moving towards a post-carbon society and needs clean and renewable energy for sustainable development. There are many methodological approaches which are helping this shift based on analyzed data about energy resources and which focus on limited types of energy including liquid fossil, solid fossil, gaseous fossil, and biomass (e.g. IPCC Guidelines, ISO 14064-1, WRI Protocol, etc.). We should also consider environmental impact (e.g. greenhouse gas emissions, water use, etc.) and the economic cost of the renewable energy to make a better decision. Recently, researchers have addressed the environmental impact of new technologies which include photovoltaics, wind turbines, hydroelectric power, and biofuel. In this work, we analyze the environmental impact with a carbon emission factor to present a correlation between $CO_2$ emission and the cost of energy resources standardized by the energy output. In addition, we reviewed Life Cycle Assessment (LCA) as another methodology. Researchers who are studying energy systems have ignored the impacts of entire energy systems, e.g. the extraction and processing of fossil fuels. In power sector, the assessment should include extraction, processing, and transportation of fuels, building of power plants, production of electricity, and waste disposal. Therefore LCA could be more suitable tool for energy cost and environmental impact estimation.

  • PDF

Prospects of Insect Biodiesel Production in Korea: A review (곤충 유래 바이오디젤의 국내 생산 가능성에 관한 고찰)

  • Park, Jo Yong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.1399-1409
    • /
    • 2019
  • Biodiesel is a renewable and environmentally friendly liquid biofuel for transportation. Insect is considered as a new valuable biomass to convert into biodiesel. In particular, BSF(Black Soldier Fly) containing high fat is a renewable source of biodiesel. Biodiesel drived BSF has high concentration of saturated fatty acid methyl ester and low concentration of polyunsaturted fatty acid methyl ester which makes it potentially an ideal substrate for producing excellent quality biodiesel. Most of the fuel properties of BSF biodiesel were met the requirements of standard EN 14214. BSF have a higher lipid yield and biodiesel productivity as compared to microalgae and vegetable oils. This review paper includes the overall summary and compilation of the insect research conducted on biodiesel production and includes the BSF biodiesel properties.

A Review on Spray Characteristics of Biobutanol and Its Blended Fuels in IC engines

  • No, Soo-Young
    • Journal of ILASS-Korea
    • /
    • v.21 no.3
    • /
    • pp.144-154
    • /
    • 2016
  • This review will be concentrated on the spray characteristics of biobutanol and its blends fuels in internal combustion engines including compression ignition, spark ignition and gas turbine engines. Butanol can be produced by fermentation from sucrose-containing feedstocks, starchy materials and lignocellulosic biomass. Among four isomers of butanol, n-butanol and iso-butanol has been used in CI and SI engines. This is due to higher octane rating and lower water solubility of both butanol compared with other isomers. The researches on the spray characteristics of neat butanol can be classified into the application to CI and SI engines, particularly GDI engine. Two empirical correlations for the prediction of spray angle for butanol as a function of Reynolds number was newly suggested. However, the applicability for the suggested empirical correlation is not yet proved. The butanol blended fuels used for the investigation of spray characteristics includes butanol-biodiesel blend, butanol-gasoline blend, butano-jet A blend and butanol-other fuel blends. Three blends such as butanol/ethanol, butanol/heptane and butanol/heavy fuel oil blends are included in butanol-other fuel blends. Even though combustion and emission characteristics of butanol/diesel fuel blend in CI engines were broadly investigated, study on spray characteristics of butanol/diesel fuel blend could not be found in the literature. In addition, the more study on the spray characteristics of butanol /gasoline blend is required.

Inhibitory Effects of Cultured Tricholoma matsutake Mycelia on Melanin Biosynthesis (송이버섯 배양 균사체의 멜라닌 생성억제효과)

  • Choi, Sang-Yoon;Kim, Na-Na;Kim, Young-Eon;Lee, Yeon-Mi;Kim, Soon-Jung;Kim, Jae-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.2
    • /
    • pp.240-242
    • /
    • 2011
  • In this study, liquid culture of Tricholoma matsutake mycelia was performed via biomass production, and its inhibitory effects on melanin biosynthesis were evaluated. The Tricholoma matsutake mycelia extract inhibited 38.6% of tyrosinase activity at 100 ppm, which is higher than that of extracelluar medium at same dose. In addition, when 100 ppm of Tricholoma matsutake mycelia extract was treated to melan-a cells for 3 days, 19% of melanin production was reduced without cell toxicity. These results suggested that cultured Tricholoma matsutake mycelia might be useful as a skin depigmenting material.