Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2021.31.5.327

Application of Membranes for Biological Waste Gas Treatment Processes  

Lee, Sang-hun (Department of Environmental Science, Keimyung University)
Publication Information
Membrane Journal / v.31, no.5, 2021 , pp. 327-332 More about this Journal
Abstract
The use of membranes for MBRWG (Membrane Bioreactor for Waste Gas) treatment can provide highly selective separation of a waste gas stream followed by effective biological removal. MBRWG have several potential advantages, among which the most distinctive one is separation of gas and liquid phases at each side of membrane potentially allowing the optimal biomass control toward effective biodegradation of target gases as well as biofilm activation. This advantage becomes especially favorable for removal of hydrophobic toxic gases, such as xylene, by MBRWG systems, because the mass transfer, the toxicity, and thereby the biodegradation of hydrophobic gas treatment requires sensitive handling of liquid stream and water control near biofilm. Among various membranes for MBRWG treatment, PDMS-hollow fiber membranes provide the high gas mass transfer. Despite lower specific surface areas, capillary type membranes are also applied current MBRWG studies. In addition to the main application of membranes as biofilm supporter in MBRWG systems, there can be another application of membranes in a posterior process for removal of residual gases or dusts emitted from conventional biological waste gas treatment processes.
Keywords
membrane; MBRWG (membrane bioreactor for waste gas); gas; biofilm;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. J. Ergas, L. Shumway, M. W. Fitch, and J. J. Neemann, "Membrane process for biological treatment of contaminated gas streams", Biotechnol. Bioeng., 63 (1999) 431-441.   DOI
2 Z. Wang, G. Xiu, X. Wu, L. Wang, J. Cai, and D. Zhang, "Biodegradation of xylene mixture from artificial simulated waste gases by capillary membrane bioreactors", Chem. Eng J., 229, 508 (2013).   DOI
3 A. Rolewicz-Kalinska, K. Lelicinska-Serafin, and P. Manczarski, "Volatile organic compounds, ammonia and hydrogen sulphide removal using a two-stage membrane biofiltration process", Chem. Eng. Res. Des., 165, 69 (2021).   DOI
4 R. Lebrero, A. C. Gondim, R. Perez, P. A. Garcia-Encina, and R. Munoz, "Comparative assessment of a biofilter, a biotrickling filter and a hollow fiber membrane bioreactor for odor treatment in wastewater treatment plants", Water Res., 49, 339 (2014).   DOI
5 S-H. Lee and A. J. Heber, "Ethylene removal using biotrickling filters: Part II. Parameter estimation and mathematical simulation" Chem. Eng. J., 158, 89 (2010).   DOI
6 D. Jeong, J. S. Min, S. M. Lee, and K. Y. Chung, "Transmembrane pressures for the submerged flat membrane in the activated sludge solution by circulation of the cleaning spherical beads", Membr. J., 28 (1), 62-66 (2018).   DOI
7 S-H. Lee, C. Li, and A. J. Heber, "The effect of nitrate on ethylene biofiltration", J. Hazard. Mater., 241-242, 331 (2012).   DOI
8 Estrada, J. M., Kraakman, N. J. R., Lebrero, R., and Munoz, "A sensitivity analysis of process design parameters, commodity prices and robustness on the economics of odour abatement technologies". Biotechnol. Adv., 30 (6), 1354, (2012).   DOI
9 Q. Liu, M. Li, R. Chen, Z. Li, G. Qian, T. An, J. Fu, and G. Sheng, "Biofiltration treatment of odors form municipal solid wastewater treatment plants". Waste Manag., 29, 2051-2058 (2009).   DOI
10 I. H. Cho and J. T. Kim, "Trends in the technology and market of membrane bioreactors (MBR) for wastewater treatment and reuse and development directions", Membr. J., 23 (1), 24 (2013).
11 M. W. Reij, J. T. F. Keurentjes, and S. Hartmans, "Membrane bioreactors for waste gas treatment", J. Biotechnol., 59, 155 (1998).   DOI
12 M. H. V. Mulder, "Basic Principles of Membrane Technology", 2nd ed., Kluwer Academic Publishers, Dordrecht (1996).
13 E. Morral, C. Lao-Luque, D. Gabriel, X. Gamisans, and A. D. Dorado, "Capillary membrane bioreactor for abatement of low soluble compounds in waste gas", J. Chem. Technol. Biotechnol., 93, 548 (2018).   DOI
14 A. Kumar, J. Dewulf, A. Vercruyssen, and H. van Langenhove. "Performance of a composite membrane bioreactor treating toluene vapors: inocula selection, reactor performance and behavior under transient conditions". Bioresour. Technol., 100, 2381 (2008).   DOI
15 Z. Wang, G. Xiu, T. Qiao, K. Zhao, and D. Zhang, "Coupling ozone and hollow fibers membrane bioreactor for enhanced treatment of gaseous xylene mixture". Bioresour. Technol., 130, 52 (2013a).   DOI
16 J. J. Orgill, H. K. Atiyeh, M. Devarapalli, J. R. Phillips, R. S. Lewis, and R. L. Huhnke, "A comparison of mass transfer coefficients between trickle-bed, hollow fiber membrane and stirred tank reactors", Bioresour. Technol., 133, 340 (2013).   DOI
17 H. Van Langenhove, I. De Bo, P. Jacobs, K. Demeestere, and J. Dewulf, "A membrane bioreactor for the removal of dimethyl sulphide and toluene from waste air", Water Sci. Technol,. 50, 215 (2004).
18 T. H. Choi and H. B. Park, Membrane and virus filter trends in the processes of biopharmaceutical production, Membr. J., 30 (1), 9-20 (2020).   DOI
19 W. Lu, Z. Wan, and G. Xiu, "Biodegradation of gaseous xylene in a flat composite membrane bioreactor", Environ. Technol., 42, 1989 (2021)   DOI
20 S. J. Ergas, "Membrane bioreactors", in: C.Kennes, M. C. Veiga (Eds.), Bioreactors for Waste Gas Treatment, Kluwer Academic Publishers, Dordrecht (2001).
21 A. Muszynski, A. Tabernacka, and M. Zaleska-Radziwill, "How to reduce the emission of microorganisms from a biofilter used to treat waste gas from a food industry plant", Atmosphere, 21, 673 (2021).
22 N. J .R. Kraakman, J. Rocha-Rios, and M. C. M Van Loosdrecht, "Review of mass transfer aspects for biological gas treatment". Appl. Microbiol. Biotechnol., 91, 873-886 (2011).   DOI
23 A. Kumar, J. Dewulf, and H. Van Langenhove, "Membrane -based biological waste gas treatment", Chem. Eng. J., 136, 82 (2008).   DOI
24 I. De Bo, H. Van Langenhove, and J. Heyman, "Removal of dimethyl sulfide from waste air in a membrane bioreactor", Desalination, 148, 281 (2002).   DOI