• 제목/요약/키워드: Biomass pretreatment

검색결과 167건 처리시간 0.028초

도시 폐기물로부터 알콜생산(I) - 전처리된 lignocellulosic biomass의 조성분 변화 - (The Production of Alcohol from Municipal Waste(I) -The Changes of Components of the Pretreated Lignocellulosic Biomass-)

  • 임부국;양재경;장준복;이종윤
    • Journal of the Korean Wood Science and Technology
    • /
    • 제22권4호
    • /
    • pp.7-12
    • /
    • 1994
  • In recent years, the municipal wastes recognized resources. This study was performed to survey the changes of main components of the pretreated(chemical, physical) lignocellulosic biomass. The result can be summerized as follows; In pulp fiber composition, newsprint and corrugating container were mainly consist of softwood fiber(tracheid). But computer print out and magazine had a large amount of hardwood fiber(wood fiber). And, carbohydrate content in the various lignocellulosic biomass increases as the following orders : Magazine < Newsprint < Corrugating container < Computer print out. In the chemical pretreatments for the delignification, sodium hypochlorite pretreatment was more effective than sodium hydroxide. By washing, ash content of lignocellulosic biomass was decreased. Physical pretreatments were less effective than chemical pretreatment for the delignification. On the other hand, in physical pretreatments, ash content of lignocellulosic biomass was the same tendency as in the chemical pretreatments.

  • PDF

반응표면분석법을 이용한 갈조류, 미역의 전처리 인자 영향 파악 및 젖산 생산성 검토 (Validation of Factors Effect on Pretreatment of Brown Algae, Undaria, Using Response Surface Methodology and Prospect of Lactic Acid Production)

  • 민창하;이두근;엄병환;윤정준
    • Korean Chemical Engineering Research
    • /
    • 제56권4호
    • /
    • pp.453-460
    • /
    • 2018
  • 원유 가격의 상승과 지구온난화로 인하여 재생 가능한 바이오매스를 이용하여 산업적으로 중요한 화합물을 생산하는 연구가 주목받고 있다. 특히, 3세대 바이오매스인 해조류는 비식량 자원, 높은 생산 수율, 온실가스 저감 등 장점을 가지고 있기에 연구 되어야 할 필요가 있다. 본 연구에서는 고체분석 방법을 이용하여 4종의 해조류 중에 미역이 가장 많은 당류를 함유하는 것을 확인하였다. 미역의 효과적인 전처리를 위해 반응표면분석법을 이용하였으며 이를 통해 고체의 부하 및 촉매의 농도 증가가 총 당의 추출률과 관계 있음을 확인하였다. 4종의 락토바실러스 균주에서 미역의 전처리물을 이용하여 젖산 생산 수행하였으며 L. alimentarius와 L. brevis가 해조류 이용한 젖산생산에 적합한 균주임을 확인하였다.

Investigation of the Effective Catalyst for Organosolv Pretreatment of Liriodendron tulipifera

  • Koo, Bon-Wook;Gwak, Ki-Seob;Kim, Ho-Yong;Choi, Joon-Weon;Yeo, Hwan-Myeong;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • 제38권2호
    • /
    • pp.149-158
    • /
    • 2010
  • Organosolv pretreatments which utilized sulfuric acid, sodium hydroxide and ammonia as catalysts were conducted to screen the effective catalyst for organosolv pretreatment of Liriodendron tulipifera. The enzymatic hydrolysis was achieved effectively with sulfuric acid (74.2%) and sodium hydroxide (63.7%). They were thus considered as effective catalysts for organosolv pretreatment of L. tulipifera. The organosolv pretreatments with sulfuric acid and sodium hydroxide showed a different behavior on the reaction mechanism. The pretreatment with sulfuric acid increased the biomass roughness and pore numbers. On the other hand, the pretreatment with sodium hydroxide enhanced the surface area due to the size reduction and minor defiberization which were caused by hemicellulose degradation at an initial stage and more defiberization by lignin degradation at a later stage. The organosolv pretreatment with sodium hydroxide was performed at several different conditions to evaluate effectiveness of sodium hydroxide as a catalyst for organosolv pretreatment. According to the results of enzymatic digestibility, the changes of chemical composition and the morphological analysis of pretreated biomass, it was suggested that the pretreatment time impacted primarily on enzymatic hydrolysis. Increase in surface area during the pretreatment was a major cause for improvement in enzymatic digestibility when sodium hydroxide was used as a catalyst.

감마선 조사 처리에 의한 결명자 줄기의 전처리와 효소가수분해 효과 (Effect of Gamma Ray Irradiation on the Pretreatment and Enzymatic Hydrolysis of Senna tora Stalk)

  • 김조은;공성호;정진태;이옥란;이재원
    • 한국약용작물학회지
    • /
    • 제26권2호
    • /
    • pp.127-133
    • /
    • 2018
  • Background: The demand of recycling renewable agricultural by-products is increasing. Radiation breeding is a method used to improve saccharification efficiency. Thus, we investigated the effect of gamma ray irradiation on the pretreatment and enzymatic hydrolysis of the stalks of Senna tora, an important medicinal plants. Methods and Results: S. tora seeds were irradiated with gamma ray at doses of 100, 200, 300, and 400 Gy. In the pretreated biomass, glucan and lignin content were higher in the M1 ($1^{st}$ generations of irradiation) S. tora stalks than in the M2 ($2^{nd}$ generations of irradiation) stalks, this can be explained by the higher degradation rate in M1. After oxalic acid pretreatment, the concentration of total phenolic compounds (TPCs) in the hydrolysate increased in the gamma ray treated seeds. The highest relative increase rate in crystallinity in the pretreated biomass was observed in M1-400 Gy and M2-100 Gy. The cellulose conversion rate was higher in M1 than in M2, except for 200 Gy. Conclusions: Gamma ray irradiation at an appropriate dose can be used to improve the efficiency of pretreatment and enzymatic hydrolysis, thereby increasing biomass availability.

고속 압출 전처리 공정을 이용한 Chlorella sp. 당화 및 바이오에탄올 생산 (Saccharification and Ethanol Production from Chlorella sp. Through High Speed Extrusion Pretreatment)

  • 이춘근;최운용;서용창;송치호;안주희;정경환;이상은;강도형;이현용
    • KSBB Journal
    • /
    • 제27권3호
    • /
    • pp.137-144
    • /
    • 2012
  • Among various pretreatment processes for bioethanol production, extrusion pretreatment, one of cheap and simple process was investigated to efficiently produce fermentable sugars from micro alga, Chlorella sp. The biomass was pretreated in a single screw extruder at five different barrel temperatures of 45, 50, 55, 60 and $65^{\circ}C$, respectively with five screw rotation speed of 10, 50, 100, 150 and 200 rpm. The pretreated biomass was reacted with two different hydrolyzing enzymes of cellulase and amyloglucosidase since the biomass contained different types of carbohydrates, compared to cellulose of agricultural by-products such wheat and corn stovers, etc. In general, higher glucose conversion yield was obtained as 13.24 (%, w/w) at $55^{\circ}C$ of barrel temperature and 100 rpm of screw speed conditions. In treating 5 FPU/glucan of cellulase and 150 Unit/mL of amyloglucosidase, ca. 64% of cellulose and 40% of polysaccharides in the micro alga were converted into glucose, which was higher yields than those from other reported data without applying an extrusion process. 84% of the fermentable sugars obtained from the hyrolyzing processes were fermented into ethanol in considering 50% of theoretical maximum fermentation yield of the yeast. These results implied that high speed extrusion could be suitable as a pretreatment process for the production of bioethanol from Chlorella sp.

당 생산을 위한 카놀라 부산물의 암모니아 침지 전처리 공정의 최적화 (Optimization of soaking in aqueous ammonia pretreatment of canola residues for sugar production)

  • 유하영;김성봉;이상준;이자현;서영준;김승욱
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.114.1-114.1
    • /
    • 2011
  • Bioenergy production from lignocellulosic biomass and agriculture wastes have been attracted because of its sustainable and non-edible source. Especially, canola is considered as one of the best feedstock for renewable fuel production. Oil extracted canola and its agriculture residues are reuseable for bioethanol production. However, a pretreatment step is required before enzymatic hydrolysis to disrupt recalcitrant lignocellulosic matrix. To increase the sugar conversion, more efficient pretreatment process was necessary for removal of saccharification barriers such as lignin. Alkaline pretreatment makes the lignocellulose swollen through solvation and induces more porous structure for enzyme access. In our previous work, aqueous ammonia (1~20%) was utilized for alkaline reagent to increase the crystallinity of canola residues pretreatment. In this study, significant factors for efficient soaking in aqueous ammonia pretreatment on canola residues was optimized by using the response surface method (RSM). Based on the fundamental experiments, the real values of factors at the center (0) were determined as follows; $70^{\circ}C$ of temperature, 17.5% of ammonia concentration and 18 h of reaction time in the experiment design using central composition design (CCD). A statistical model predicted that the highest removal yield of lignin was 54% at the following optimized reaction conditions: $72.68^{\circ}C$ of temperature, 18.30% of ammonia concentration and 18.30 h of reaction time. Finally, maximum theoretical yields of soaking in aqueous ammonia pretreatment were 42.23% of glucose and 22.68% of xylose.

  • PDF

유도적 돌연변이 유발 방법을 통한 1-ethyl-3-methylimidazolium acetate에 대해 내성을 갖는 돌연변이 효모 선별 (Isolation of Mutant Yeast Strains having Resistance to 1-ethyl-3-methylimidazolium Acetate through a Directed Evolutionary Approach)

  • 이유진;권덕호;박재범;하석진
    • 한국미생물·생명공학회지
    • /
    • 제45권1호
    • /
    • pp.51-56
    • /
    • 2017
  • 목질계 바이오 매스 전처리에 사용되는 ionic liquid는 전처리 후 100% 회수되지 않아 잔존하는 ionic liquid의 독성이 직접적으로 미생물 균주의 생육에 나쁜 영향을 미쳐 에탄올 발효의 수율 및 생산성을 저해하는 문제를 가지고 있다. 본 연구에서는 ionic liquid에 저해를 받지 않으며 높은 ethanol 생산 효율을 가진 균주를 얻고자 유도적 돌연변이 유발 실험을 진행하였다. 선별된 돌연변이 균주 D452-B2와 D452-S3는 3% [EMIM][Ac]가 포함된 배지에서 glucose 소비속도는 $4.5g{\cdot}l^{-1}{\cdot}h^{-1}$$4.4g{\cdot}l^{-1}{\cdot}h^{-1}$로 모균주인 S. cerevisiae D452-2 균주에 비해 6배 가량 증가하였으며, ethanol 생산성은 각각 $1.99g{\cdot}l^{-1}{\cdot}h^{-1}$$2.0g{\cdot}l^{-1}{\cdot}h^{-1}$로 27배 가량 증가하였다.

Anaerobic Fermentation of Woody Biomass Treated by Various Methods

  • Nakamura, Yoshitoshi;Mtui, Godliving
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제8권3호
    • /
    • pp.179-182
    • /
    • 2003
  • Anaerobic fermentation was attempted to produce methane from the wood chip (Eucalyptus globulus). By the pretreatment of the wood chip using hot water with high temperature, NaOH, and steam explosion, the production of methane gas was enhanced. The pretreatment using Steam explosion resulted in more amount of methane gas produced than the treatment using either hot water or 1% (w/w) NaOH with high temperature, and the steam explosion at a steam pressure of 25 atm and a steaming time of 3 min was the most effective for the methane production. The amount of methane gas produced depended on the ratio of weight of Klason lignin, a high molecular weight lignin, in the treated wood chip.

알칼리 전처리가 굴참나무의 효소 당화에 미치는 영향 (Impact of Alkali Pretreatment to Enzymatic Hydrolysis of Cork Oak (Quercus Variabilis))

  • 윤수영;신수정
    • 펄프종이기술
    • /
    • 제46권6호
    • /
    • pp.1-7
    • /
    • 2014
  • Dissolving part of xylan and lignin in lignocellulosic biomass by base can be used as pretreatment technique. Cork oak was pretreated with sodium hydroxide solution and the pretreatment effects were evaluated with two critical factors - NaOH concentration and pretreatment temperature. Some of xylan and lignin were removed by base pretreatment. At $90^{\circ}C$ and 13% NaOH pretreatment, 22.0% of lignin and 78.8% of xylan removed by base treatment. Enzymatic hydrolysis of cork oak which was pretreated at higher temperature or concentration was further improved. After pretreatment of cork oak with 13% NaOH at $90^{\circ}C$, the conversion rate of cellulose to fermentable sugars were reached up to 91.3%. At ethanol fermentation with enzymatic hydrolysate from different pretreatment conditions, all enzymatic saccharification liquids were well fermented by Saccharomyces cerevisiae.

Alkaline Peroxide Pretreatment of Waste Lignocellulosic Sawdust for Total Reducing Sugars

  • Satish Kumar Singh;Sweety Verma;Ishan Gulati;Suman Gahlyan;Ankur Gaur;Sanjeev Maken
    • Korean Chemical Engineering Research
    • /
    • 제61권3호
    • /
    • pp.412-418
    • /
    • 2023
  • The surge in the oil prices, increasing global population, climate change, and waste management problems are the major issues which have led to the development of biofuels from lignocellulosic wastes. Cellulosic or second generation (2G) bioethanol is produced from lignocellulosic biomass via pretreatment, hydrolysis, and fermentation. Pretreatment of lignocellulose is of considerable interest due to its influence on the technical, economic and environmental sustainability of cellulosic ethanol production. In this study, furniture waste sawdust was subjected to alkaline peroxide (H2O2) for the production of reducing sugars. Sawdust was pretreated at different concentrations from 1-3% H2O2 (v/v) loadings at a pH of 11.5 for a residence time of 15-240 min at 50, 75 and 90 ℃. Optimum pretreatment conditions, such as time of reaction, operating temperature, and concentration of H2O2, were varied and evaluated on the basis of the amount of total reducing sugars produced. It was found that the changes in the amount of lignin directly affected the yield of reducing sugars. A maximum of 50% reduction in the lignin composition was obtained, which yielded a maximum of 75.3% total reducing sugars yield and 3.76 g/L of glucose. At optimum pretreatment conditions of 2% H2O2 loading at 75 ℃ for 150 min, 3.46 g/L glucose concentration with a 69.26% total reducing sugars yield was obtained after 48 hr. of the hydrolysis process. Pretreatment resulted in lowering of crystallinity and distortion of the sawdust after the pretreatment, which was further confirmed by XRD and SEM results.