Browse > Article
http://dx.doi.org/10.4014/mbl.1702.02005

Isolation of Mutant Yeast Strains having Resistance to 1-ethyl-3-methylimidazolium Acetate through a Directed Evolutionary Approach  

Lee, Yoo-Jin (Department of Bioengineering and Technology, Kangwon National University)
Kwon, Deok-Ho (Department of Bioengineering and Technology, Kangwon National University)
Park, Jae-Bum (Department of Bioengineering and Technology, Kangwon National University)
Ha, Suk-Jin (Department of Bioengineering and Technology, Kangwon National University)
Publication Information
Microbiology and Biotechnology Letters / v.45, no.1, 2017 , pp. 51-56 More about this Journal
Abstract
Cellulosic biomass is a renewable source for biofuel production from non-edible biomass. An optimized pretreatment process is required for the efficient utilization of cellulosic biomass. Among various pretreatment processes, the use of ionic liquids has been reported recently. However, the residual ionic liquid after pretreatment acts as an inhibitor of microbial fermentation. Recently, we isolated mutant Saccharomyces cerevisiae strains resistant to the ionic liquid 1-ethyl-3-methylimidazolium acetate ([EMIM][Ac]) by using a directed evolutionary approach. When 3% [EMIM][Ac] was added to a medium containing 80 g/l of glucose, mutants D452-B2 and D452-S3 produced 35.6 g/l and 36.3 g/l of ethanol, respectively, for 18 h while the parental strain (S. cerevisiae D452-2) produced 1.3 g/l of ethanol. Thus, these mutant S. cerevisiae strains might prove advantageous when ionic liquids are used for biofuel production from cellulosic biomass.
Keywords
Cellulosic biomass; ionic liquid; tolerance; yeast;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tye YY, Lee KT, Abdullah WNW, Leh CP. 2016. The world availability of non-wood lignocellulosic biomass for the production of cellulosic ethanol and potential pretreatments for the enhancement of enzymatic saccharification. Renew Sustain Energy Rev. 60: 155-172.   DOI
2 Ajanovic A, Haas R. 2014. On the future prospects and limits of biofuels in Brazil, the US and EU. Appl. Energy 135: 730-737.   DOI
3 Ho S-H, Huang S-W, Chen C-Y, Hasunuma T, Kondo A, Chang J-S. 2013. Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour. Technol. 135: 191-198.   DOI
4 Sanchez OJ, Cardona CA. 2008. Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour. Technol. 99: 5270-5295.   DOI
5 Yamada R, Nakashima K, Asai-Nakashima N, Tokuhara W, Ishida N, Katahira S, et al. 2016. Direct ethanol production from ionic liquid-pretreated lignocellulosic biomass by cellulase-displaying yeasts. Appl. Biochem. Biotechnol. in press.
6 Shirkavand E, Baroutian S, Gapes DJ, Young BR. 2016. Combination of fungal and physicochemical processes for lignocellulosic biomass pretreatment-A review. Renew Sustain Energy Rev. 54: 217-234.   DOI
7 Su C-H, Chung M-H, Hsieh H-J, Chang Y-K, Ding J-C, Wu H-M. 2012. Enzymatic hydrolysis of lignocellulosic biomass in ionic liquid media for fermentable sugar production. J. Taiwan Inst. Chem. Eng. 43: 573-577.   DOI
8 Chakraborty S, Gaikwad A. 2010. Mixing effects in cellulasemediated hydrolysis of cellulose for bio-ethanol production. Ind. Eng. Chem. Res. 49: 10818-10825.   DOI
9 Labbe N, Kline LM, Moens L, Kim K, Kim PC, Hayes DG. 2012. Activation of lignocellulosic biomass by ionic liquid for biorefinery fractionation. Bioresour. Technol. 104: 701-707.   DOI
10 Lee S-M, Chang W-J, Koo Y-M. 2005. Application of ionic liquids in biotechnology. Korean J. Biotechnol. Bioeng. 20: 183-191.
11 Ninomiya K, Omote S, Ogino C, Kuroda K, Noguchi M, Endo T, et al. 2015. Saccharification and ethanol fermentation from cholinium ionic liquid-pretreated bagasse with a different number of post-pretreatment washings. Bioresour. Technol. 189: 203-209.   DOI
12 Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S, et al. 2006. Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem. 8: 325-327.   DOI
13 Li C, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, et al. 2010. Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour. Technol. 101: 4900-4906.   DOI
14 Elgharbawy AA, Alam MZ, Moniruzzaman M, Goto M. 2016. Ionic liquid pretreatment as emerging approaches for enhanced enzymatic hydrolysis of lignocellulosic biomass. Biochem. Eng. J. 109: 252-267.   DOI
15 Zhao H, Jones CL, Baker GA, Xia S, Olubajo O, Person VN. 2009. Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis. J. Biotechnol. 139: 47-54.   DOI
16 Kuroda K, Miyamura K, Satria H, Takada K, Ninomiya K, Takahashi K. 2016. Hydrolysis of cellulose using an acidic and hydrophobic ionic liquid and subsequent separation of glucose aqueous solution from the ionic liquid and 5-(Hydroxymethyl) furfural. ACS Sustain Chem. Eng. 4: 3352-3356.   DOI
17 Pham TPT, Cho C-W, Yun Y-S. 2010. Environmental fate and toxicity of ionic liquids: a review. Water Res. 44: 352-372.   DOI
18 Nakashima K, Yamaguchi K, Taniguchi N, Arai S, Yamada R, Katahira S, et al. 2011. Direct bioethanol production from cellulose by the combination of cellulase-displaying yeast and ionic liquid pretreatment. Green Chem. 13: 2948-2953.   DOI
19 Romero A, Santos A, Tojo J, Rodriguez A. 2008. Toxicity and biodegradability of imidazolium ionic liquids. J. Hazard. Mater. 151: 268-273.   DOI
20 Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD. 2001. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. 3: 156-164.   DOI
21 Sitepu IR, Shi S, Simmons BA, Singer SW, Boundy-Mills K, Simmons CW. 2014. Yeast tolerance to the ionic liquid 1-ethyl-3-methylimidazolium acetate. FEMS Yeast Res. 14: 1286-1294.   DOI
22 Dickinson Q, Bottoms S, Hinchman L, McIlwain S, Li S, Myers CL, et al. 2016. Mechanism of imidazolium ionic liquids toxicity in Saccharomyces cerevisiae and rational engineering of a tolerant, xylose-fermenting strain. Microb. Cell Fact. 15: 17.   DOI
23 Yu C, Simmons BA, Singer SW, Thelen MP, VanderGheynst JS. 2016. Ionic liquid-tolerant microorganisms and microbial communities for lignocellulose conversion to bioproducts. Appl. Microbiol. Biotechnol. 100: 10237-10249.   DOI