• 제목/요약/키워드: Biomass and waste

검색결과 326건 처리시간 0.027초

Bacterial Exopolysaccharides: Insight into Their Role in Plant Abiotic Stress Tolerance

  • Bhagat, Neeta;Raghav, Meenu;Dubey, Sonali;Bedi, Namita
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권8호
    • /
    • pp.1045-1059
    • /
    • 2021
  • Various abiotic stressors like drought, salinity, temperature, and heavy metals are major environmental stresses that affect agricultural productivity and crop yields all over the world. Continuous changes in climatic conditions put selective pressure on the microbial ecosystem to produce exopolysaccharides. Apart from soil aggregation, exopolysaccharide (EPS) production also helps in increasing water permeability, nutrient uptake by roots, soil stability, soil fertility, plant biomass, chlorophyll content, root and shoot length, and surface area of leaves while also helping maintain metabolic and physiological activities during drought stress. EPS-producing microbes can impart salt tolerance to plants by binding to sodium ions in the soil and preventing these ions from reaching the stem, thereby decreasing sodium absorption from the soil and increasing nutrient uptake by the roots. Biofilm formation in high-salinity soils increases cell viability, enhances soil fertility, and promotes plant growth and development. The third environmental stressor is presence of heavy metals in the soil due to improper industrial waste disposal practices that are toxic for plants. EPS production by soil bacteria can result in the biomineralization of metal ions, thereby imparting metal stress tolerance to plants. Finally, high temperatures can also affect agricultural productivity by decreasing plant metabolism, seedling growth, and seed germination. The present review discusses the role of exopolysaccharide-producing plant growth-promoting bacteria in modulating plant growth and development in plants and alleviating extreme abiotic stress condition. The review suggests exploring the potential of EPS-producing bacteria for multiple abiotic stress management strategies.

축산분뇨 혐기소화 잔재물의 특성 및 초지 적용성 평가 (Evaluation of the properties and the papermaking applicability of the residue originated from the anaerobic digestion of livestock manure)

  • 김승민;정웅기;성용주;안희권;김동성;윤도현;김동섭;정광화
    • 펄프종이기술
    • /
    • 제46권3호
    • /
    • pp.58-64
    • /
    • 2014
  • Management of organic waste such as livestock manure has been considered as very important issue in terms of the environment. The anaerobic digestion of livestock manure become more attractive treatment method and has been widely applied. In this work, the properties of the residue after the anaerobic digestion of livestock manure was evaluated for providing the basic data to develop new application. The lignin and the ash contents of the residue were much higher than those of other biomass such as wood. The components of the residue were also analyzed with SEM-EDS and Elemental Analyzer. The addition of the residue into the handsheet paper resulted in the higher bulk and he higher air permeability with the loss of the strength properties. The water holding capacity of the handsheet were increased until the 40 % addition of the residue.

New composites based on low-density polyethylene and rice husk: Elemental and thermal characteristics

  • Anshar, Muhammad;Tahir, Dahlang;Makhrani, Makhrani;Ani, Farid Nasir;Kader, Ab Saman
    • Environmental Engineering Research
    • /
    • 제23권3호
    • /
    • pp.250-257
    • /
    • 2018
  • We developed new composites by combining the solid waste from Low-Density Polyethylene in the form of plastic bag (PB) and biomass from rice husk (RH),in the form of $(RH)_x(PB)_{1-x}$ (x = (1, 0.9, 0.7, 0.5)), as alternative fuels for electrical energy sources, and for providing the best solution to reduce environmental pollution. Elemental compositions were obtained by using proximate analysis, ultimate analysis, and X-ray fluorescence spectroscopy, and the thermal characteristics were obtained from thermogravimetric analysis. The compositions of carbon and hydrogen from the ultimate analysis show significant increases of 20-30% with increasing PB in the composite. The activation energy for RH is 101.22 kJ/mol; for x = 0.9 and 0.7, this increases by 4 and 6 magnitude, respectively, and for x = 0.5, shows remarkable increase to 165.30 kJ/mol. The range of temperature of about $480-660^{\circ}C$ is required for combustion of the composites $(RH)_x(PB)_{1-x}$ (x = (1, 0.9, 0.7, 0.5)) to perform the complete combustion process and produce high energy. In addition, the calorific value was determined by using bomb calorimetry, and shows value for RH of 13.44 MJ/kg, which increases about 30-40% with increasing PB content, indicating that PB has a strong effect of increasing the energy realized to generate electricity.

Effects of Vermicompost Application on the Growth and Ginsenoside Content of Panax ginseng in a Reclaimed Field

  • Eo, Jinu;Park, Kee-Choon;Lim, Jin-Soo;Kim, Myung-Hyun;Choi, Soon-Kun;Na, Young-Eun
    • 한국토양비료학회지
    • /
    • 제49권2호
    • /
    • pp.138-143
    • /
    • 2016
  • The objective of this study was to evaluate the effects of the application of vermicomposts on the growth parameters and ginsenoside content of ginseng roots. Food waste vermicompost (FW), cow manure vermicompost (CM), and paper sludge vermicompost (PS) were applied at 10 and $40t\;ha^{-1}$, respectively. One-year-old seedlings were transplanted and 4-year-old roots were harvested. Soil nitrate and phosphate concentrations were increased in the plots applied with FW and CM at $40t\;ha^{-1}$. Soil pH and exchangeable Ca concentrations were higher at FW $40t\;ha^{-1}$ than at CM $40t\;ha^{-1}$. Root yield increased when treated with FW $40t\;ha^{-1}$ in comparison to the yield for the control. The incidences of root rot disease and ginsenoside content were not significantly affected by the treatments. The results suggested that application of vermicompost might not show a relationship between root biomass and ginsenoside content. It further showed that proper use of vermicompost can promote root yield without a reduction in root quality or an increase in the incidence of root rot disease in reclaimed fields.

식물유 기반 에스토라이드 합성 및 윤활 특성 (Synthesis and Lubricant Properties of Vegetable Oil based on Estolides)

  • 손정매;김남균;신지훈;정근우;윤병태;김영운
    • Tribology and Lubricants
    • /
    • 제31권5호
    • /
    • pp.195-204
    • /
    • 2015
  • Several researches are focused on improving the value of fine chemicals based on biomass resources due to environmental and other concerns associated with the use of petroleum-based products. Therefore, the synthesis and application of estolides derived from plant-based waste oil materials and their application as lubricants and as processing oil for butyl rubber products have been studied. Four kinds of estolide were prepared with conversions of 71~92% over 24h using various vegetable oils, as determined by size exclusion chromatography (SEC) and nuclear magnetic resonance (NMR) spectroscopy. FT-IR spectroscopy determines the esterification of estolides using 2-ethylhexyl alcohol. The estolides have iodine values of 35~90, α-ester/α-acid ratios of 0.45~0.55, and total acid number of 114~134 mg KOH g–1. Four ball wear tests show that the wear scar diameters (WSDs) of estolides as base oil significantly decreased to 0.328~0.494 mm, compared to WSDs of 0.735 and 0.810 mm of WSD for 150N and Yubase 6, respectively, as general base oil. Thus, the estolides have better wear resistance and satisfying design objectives for the engineering of a variety of lubricant base oils.

Carbon Forestry: Scope and Benefit in Bangladesh

  • Rahman, Md. Siddiqur;Akter, Salena
    • Journal of Forest and Environmental Science
    • /
    • 제29권4호
    • /
    • pp.249-256
    • /
    • 2013
  • The aim of the study was to reveal the scope and benefits derives from establishing carbon forests in a country like Bangladesh. Carbon forestry is the modernized forestry practice that evolves no cutting of trees or vegetation rather conserves them in the wood. Trees might be the source of carbon sink at large scale by establishing carbon forests. To find out how and in what extent forests of Bangladesh could contribute to global emission reduction, tree species of economic importance were taken into account about their carbon sequestration potential. Data source was a secondary one. Bangladesh has subtropical evergreen and deciduous forest tree species. Here trees can sequester almost 45-55 percent organic carbon in their biomass. On an average, trees in different types of stands can sequester 150-300 tC/ha. Carbon value of these forests might be 7,500-15,000 USD per hactre (assuming 50 USD per equivalent $tCO_2$). Thus, accounting tree carbon credits of total forested lands of Bangladesh, there might be a lump sum value of $1.89{\times}10^{10}-3.79{\times}10^{10}$ USD. If soil carbon is added, this amount would jump. Alternatively, there are two times higher spaces as marginal lands than this for starting carbon forestry. However, carbon forestry concept is still a theoretical conception unless otherwise their challenges are addressed and solved. Despite of this, forests of Bangladesh might be the key showcase for conserving biodiversity in association with carbon capture. Protected areas in Bangladesh are of government wealth, however, degraded and denuded waste and marginal lands might be the best fit for establishing carbon forests.

수용액상에서 클로렐라와 녹차의 염소 제거 효과 비교 (Comparison on Chlorine Removal Characteristics of Chlorella vulgaris and Green Tea in Aqueous Solution)

  • 인만진;조인경;김선희;김동청;채희정;오남순;김동호
    • 한국식품영양과학회지
    • /
    • 제30권2호
    • /
    • pp.344-349
    • /
    • 2001
  • 클로렐라는 건강보조식품으로 이용될 뿐만 아니라 수용액상에서 중금속 제거를 위한 흡착제로 많이 연구되고 있다. 본 연구에서는 클로렐라를 이용하여 수도물의 소독제로 사용되는 염소의 제거 효과를 확인하였으며 그 결과를 녹차, activated carbon과 비교하였다. 수용액상에서 pH와 초기염소의 농도가 염소의 제거에 미치는 영향을 조사하였다. 최적의 제거 pH는 10이었으며, 염소의 제거량은 초기 염소의 농도가 1.62 g/L까지 증가함에 따라 2.46 mg/mg까지 증가하였다. 녹차의 경우 초기 염소의 농도가 1.0 g/L 이상으로 증가하여도 제거량은 약 1.5mg/mg 정도에 더 이상 증가하지 않았다. 클로렐라와 녹차에 의한 염소의 제거 결과는 Langmuir 흡착모델과 Freundlich 흡착모델에 대단히 잘 맞았으며 Langmuir 흡착모델에 의한 클로렐라의 최대 흡착량은 녹차와 activated carbon의 최대 흡착량에 비하여 약 2배로 나타나 클로렐라의 염소의 제거효능이 매우 우수한 것으로 사료되었다.

  • PDF

Effects of electron donors and acceptors in generating bioelectrical energy using microbial fuel cells

  • Gurung, Anup;Oh, Sang-Eun
    • 한국환경농학회지
    • /
    • 제31권1호
    • /
    • pp.24-29
    • /
    • 2012
  • BACKGROUND: In recent years, microbial fuel cells (MFCs) have emerged as a promising technology for recovering renewable energy from waste biomass, especially wastewater. In this study, the possibility of bioelectricity generation in two chambered mediator-less microbial fuel cells (MFCs) was successfully demonstrated using fermentable and non-fermentable substrates. METHODS AND RESULTS: Two different electron acceptors have been tested in the cathode chamber for the effects of reducing agent on the power generation in MFCs. The average voltages of $0.26{\pm}0.014$ V and $0.36{\pm}0.02$ V were achieved with acetate using oxygen and potassium ferricyanide as reducing agent, respectively. Similarly, with glucose the average voltages of $0.256{\pm}0.05$ V and $0.340{\pm}0.04$ V were obtained using oxygen and ferricyanide, respectively. Using potassium ferricyanide as the reducing agent, the power output increases by 39 and 43% with acetate and glucose, respectively, as compared to the dissolved oxygen. Slightly higher coulombic efficiency (CE%) was obtained in acetate as compared to MFCs operated with glucose. The maximum power densities of 124 mW/$m^2$ and 204 mW/$m^2$ were obtained using dissolved oxygen and $K_3Fe(CN)_6$, respectively. CONCLUSION(s): This study demonstrates that power generation from the MFCs can be influenced significantly by the different types of catholyte. Relatively higher CE was obtained with $K_3Fe(CN)_6$. Thus, application of $K_3Fe(CN)_6$ as the catholyte can be vital for scaling uppower generation from the MFCs forreal time applications.

Analysis of fatty acid methyl ester in bio-liquid by hollow fiber-liquid phase microextraction

  • Choi, Minseon;Lee, Soyoung;Bae, Sunyoung
    • 분석과학
    • /
    • 제30권4호
    • /
    • pp.174-181
    • /
    • 2017
  • Bio-liquid is a liquid by-product of the hydrothermal carbonization (HTC) reaction, converting wet biomass into solid hydrochar, bio-liquid, and bio-gas. Since bio-liquid contains various compounds, it requires efficient sampling method to extract the target compounds from bio-liquid. In this research, fatty acid methyl ester (FAME) in bio-liquid was extracted based on hollow fiber supported liquid phase microextraction (HF-LPME) and determined by Gas Chromatography-Flame Ionization Detector (GC-FID) and Gas Chromatography/Mass Spectrometry (GC/MS). The well-known major components of biodiesel, including methyl myristate, palmitate, methyl palmitoleate, methyl stearate, methyl oleate, and methyl linoleate had been selected as standard materials for FAME analysis using HF-LPME. Physicochemical properties of bio-liquid was measured that the acidity was 3.30 (${\pm}0.01$) and the moisture content was 100.84 (${\pm}3.02$)%. The optimization of HF-LPME method had been investigated by varying the experimental parameters such as extraction solvent, extraction time, stirring speed, and the length of HF at the fixed concentration of NaCl salt. As a result, optimal conditions of HF-LPME for FAMEs were; n-octanol for extraction solvent, 30 min for extraction time, 1200 rpm for stirring speed, 20 mm for the HF length, and 0.5 w/v% for the concentration of NaCl. Validation of HF-LPME was performed with limit of detection (LOD), limit of quantitation (LOQ), dynamic range, reproducibility, and recovery. The results obtained from this study indicated that HF-LPME was suitable for the preconcentration method and the quantitative analysis to characterize FAMEs in bio-liquid generated from food waste via HTC reaction.

Utilization of Potato Starch Processing Wastes to Produce Animal Feed with High Lysine Content

  • Li, Ying;Liu, Bingnan;Song, Jinzhu;Jiang, Cheng;Yang, Qian
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권2호
    • /
    • pp.178-184
    • /
    • 2015
  • This work aims to utilize wastes from the potato starch industry to produce single-cell protein (SCP) with high lysine content as animal feed. In this work, S-(2-aminoethyl)-L-cysteine hydrochloride-resistant Bacillus pumilus E1 was used to produce SCP with high lysine content, whereas Aspergillus niger was used to degrade cellulose biomass and Candida utilis was used to improve the smell and palatability of the feed. An orthogonal design was used to optimize the process of fermentation for maximal lysine content. The optimum fermentation conditions were as follows: temperature of 40℃, substrate concentration of 3%, and natural pH of about 7.0. For unsterilized potato starch wastes, the microbial communities in the fermentation process were determined by terminal restriction fragment length polymorphism analysis of bacterial 16S rRNA genes. Results showed that the dominant population was Bacillus sp. The protein quality as well as the amino acid profile of the final product was found to be significantly higher compared with the untreated waste product at day 0. Additionally, acute toxicity test showed that the SCP product was non-toxic, indicating that it can be used for commercial processing.