Browse > Article
http://dx.doi.org/10.7745/KJSSF.2016.49.2.138

Effects of Vermicompost Application on the Growth and Ginsenoside Content of Panax ginseng in a Reclaimed Field  

Eo, Jinu (Climate Change & Agroecology Division, Department of Agricultural Environment, National Institute of Agricultural Sciences, Rural Development Administration)
Park, Kee-Choon (National Institute of Horticultural & Herbal Science, Rural Development Administration)
Lim, Jin-Soo (National Institute of Horticultural & Herbal Science, Rural Development Administration)
Kim, Myung-Hyun (Climate Change & Agroecology Division, Department of Agricultural Environment, National Institute of Agricultural Sciences, Rural Development Administration)
Choi, Soon-Kun (Climate Change & Agroecology Division, Department of Agricultural Environment, National Institute of Agricultural Sciences, Rural Development Administration)
Na, Young-Eun (Climate Change & Agroecology Division, Department of Agricultural Environment, National Institute of Agricultural Sciences, Rural Development Administration)
Publication Information
Korean Journal of Soil Science and Fertilizer / v.49, no.2, 2016 , pp. 138-143 More about this Journal
Abstract
The objective of this study was to evaluate the effects of the application of vermicomposts on the growth parameters and ginsenoside content of ginseng roots. Food waste vermicompost (FW), cow manure vermicompost (CM), and paper sludge vermicompost (PS) were applied at 10 and $40t\;ha^{-1}$, respectively. One-year-old seedlings were transplanted and 4-year-old roots were harvested. Soil nitrate and phosphate concentrations were increased in the plots applied with FW and CM at $40t\;ha^{-1}$. Soil pH and exchangeable Ca concentrations were higher at FW $40t\;ha^{-1}$ than at CM $40t\;ha^{-1}$. Root yield increased when treated with FW $40t\;ha^{-1}$ in comparison to the yield for the control. The incidences of root rot disease and ginsenoside content were not significantly affected by the treatments. The results suggested that application of vermicompost might not show a relationship between root biomass and ginsenoside content. It further showed that proper use of vermicompost can promote root yield without a reduction in root quality or an increase in the incidence of root rot disease in reclaimed fields.
Keywords
Nutrient; Root rot disease; Organic amendment; Ginseng;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Arancon, N.Q., C.A. Edwards, P. Bierman, J.D. Metzger, and C. Lucht. 2005. Effects of vermicompost produced form cattle manure, food waste and paper waste on the growth and yield of peppers in the field. Pedobiologia 49:297-306.   DOI
2 Atiyeh, R.M., C.A. Edwards, S. Subler, and J.D. Metzger. 2001. Pig manure vermicompost as a component of a horticultural bedding plant medium: effects on physicochemical properties and plant growth. Bioresour. Technol. 78:11-20.   DOI
3 Chuang, W.C. and S.J. Sheu. 1994. Determination of ginsenosides in ginseng crude extracts by high-performance liquid chromatography. J. Chromatogr. 685:243-251.   DOI
4 Devi, B.S.R., Y.J. Kim, S.K. Selvi, S. Gayathri, K. Altanzul, S. Parvin, D.U. Yang, O.R. Lee, S. Lee, and D.C. Yang. 2012. Influence of Potassium Nitrate on Antioxidant Level and Secondary Metabolite Genes under Cold stress in Panax ginseng. Russ. J. Plant Physiol. 59:318-325.   DOI
5 Dubey, V.S., R. Bhalla, and R. Luthra. 2003. An overview of the nonmevalonate pathway for terpenoid biosynthesis in plants. J. Biosci. 28:637-646.   DOI
6 Eo, J. and K.C. Park. 2013. Effects of manure composts on soil biota and root-rot disease incidence of ginseng (Panax ginseng). Appl. Soil Ecol. 71:58-64.   DOI
7 Ersahin, Y.S., K. Haktanir, and Y. Yanar. 2009. Vermicompost suppresses Rhizoctonia solani Kuhn in cucumber seedlings. J. Plant Dis. Protect. 116:182-188.   DOI
8 Fournier, A. R., J. T. A. Proctor, L. Gauthier, S. Khanizadeh, A. Belanger, A. Gosselin, and M. Dorais. 2003. Understory light and root ginsenosides in forest-grown Panax quinquefolius. Phytochemistry 63:777-782.   DOI
9 Hampel, D., A. Swatski, A. Mosandl, and M. Wust. 2007. Biosynthesis of monoterpenes and norisoprenoids in raspberry fruits (Rubus idaeus L.): the role of cytosolic mevalonate and plastidial methylerythritol phosphate pathway. J. Agric. Food Chem. 55:9296-9304.   DOI
10 Haukioja, E., V. Ossipov, J. Koricheva, T. Honkanen, S. Larsson, and K. Lempa. 1998. Biosynthetic origin of carbon-based secondary compounds: cause of variable responses of woody plants to fertilization? Chemoecology 8:133-139.   DOI
11 Ibrahim, M.H., H.Z.E. Jaafar, E. Karimi, and A. Ghasemzadeh. 2013. Impact of organic and inorganic fertilization on the phytochemical and antioxidant activity of kacip Fatimah (Labisia pumila Benth). Molecules 18:10973-10988.   DOI
12 Jochum, G.M., K.W. Mudge, and R.B. Thomas. 2007. Elevated temperatures increase leaf senescence and root secondary metabolite concentrations in the understory herb Panax Quinquefolius (Araliaceae). Amer. J. Bot. 94:819-826.   DOI
13 Kim, D.W., H.J. Kim, J.S. Park, D.H. Kim, S.S. Cheong, and J. Ryu. 2010. Selection of suitable organic matter for To-jik nursery in Panax ginseng C.A. Meyer. Korean J. Medicinal Crop Sci. 18:74-78.
14 Kim, G.S., S.E. Lee, H.J. Noh, H. Kwon, S.W. Lee, S.Y. Kim, and Y.B. Kim. 2012. Effects of natural bioactive products on the growth and ginsenoside contents of Panax ginseng cultured in an aeroponic system. J. Ginseng Res. 36:430-441.   DOI
15 Lee, I.H., C.S. Yuk, K.W. Han, K.Y. Nam, H.W. Bae. 1980. Influences of soil chemical properties in ginseng field on the growth and the yield of ginseng. J. Korean Soc. Soil Sci. Fert. 13;99-105.
16 Konsler, T.R., S.W. Zito, J.E. Shelton, and E.J. Staba. 1990. Lime and phosphorus effects on American ginseng: II. Root and leaf ginsenoside content and their relationship. J. Am. Hortic. Soc. 115:575-580.
17 Lee, G.S., S.S. Lee, and J.D. Chung. 2003. Effects of several kinds of composts on root yield of ginseng seedlings. J. Ginseng Res. 27:32-36.   DOI
18 Lee, I.H., C.S. Park, and K.J. Song. 1989. Growth of Panax ginseng affected by the annual change in physic-chemical properties of ginseng cultivated soil. Korean J. Ginseng Sci. 13:84-91.
19 Lee, J. and K.W. Mudge. 2013a. Gypsum effects on plant growth, nutrients, ginsenosides, and their relationship in American ginseng. Hort. Environ. Biotechnol. 54:228-235.   DOI
20 Lee, J. and K.W. Mudge. 2013b. Water deficit affects plant and soil water status, plant growth, and ginsenoside contents in American ginseng. Hort. Environ. Biotechnol. 54:475-483.   DOI
21 Lim, W.S., K.W. Mudge, and J.W. Lee. 2006. Effect of water stress on ginsenoside production and growth of American ginseng. HortTechnology 16:517-522.
22 Massad, T.J., L.A. Dyer, and C.G. Vega. 2012. Costs of defense and a test of the carbon-nutrient balance and growth-differentiation balance hypotheses for two co-occurring classes of plant defense. PLoS ONE 7:e47554.   DOI
23 Nam, Y.K., J.I. Lee, and K.H. Han. 2002. Production of organic compost to exclusive use in a Ginseng. J. KOWREC. 10:139-147.
24 Park, H.W., H.S. Mo, I.B. Jang, J. Yu, Y.S. Lee, Y.C. Kim, K.C. Park, E.H. Lee, K.H. Kim, and D.Y. Hyun. 2015. Emergence rate and growth characteristics of ginseng affected by different types of organic matters in greenhouse of direct-sowing culture. Korean. J. Med. Crop Sci. 23:27-36.   DOI
25 Neilson, E.H., J.Q.D. Goodger, I.E. Woodrow, and B.L. Moller. 2013. Plant chemical defense: at what cost?. Trends Plant. Sci. 18:250-258.   DOI
26 Park, H., M.K. Lee, and C.H. Lee. 1986. Effect of nitrogen phosphorus and potassium on ginsenoside composition of Panax Ginseng root grown with nutrient solution. J. Korean Agr. Chem. Soc. 29:78-82.
27 Park, H., S.K. Mok, and K.S. Kim. 1982. Relationship between soil moisture, organic matter and plant growth in ginseng plantations. J. Korean Soc. Soil Fert. 15:156-161.
28 Rural Development Administration (RDA). 1988. Method of soil chemical properties. RDA. Korea.
29 Reeleder, R.D., B. Capell, J. Hendel, and A. Starratt. 2000. Influence of plant density on yield and ginsenoside levels of Panax quinquefolius L. J. Herb Spices Med. Plants 7:65-76.
30 Roy, R.C., R. Grohs, and R.D. Reeleder. 2003. A method for the classification by shape of dried roots of ginseng (Panax quinquefolius L.). Can. J. Plant Sci. 83:955-958.   DOI
31 Tewari, R.K., S.Y. Lee, E.J. Hahn, and K.Y. Paek. 2007. Temporal changes in the growth, saponin content and antioxidant defense in the adventitious roots of Panax ginseng subjected to nitric acid elicitation. Plant Biotechnol. Rep. 1:227-235.   DOI
32 Xu, X., X. Hu, S.J. Neill, J. Fang, and W. Cai. 2005. Fungal elicitor induces singlet oxygen generation, ethylene release and saponin synthesis in cultured cells of Panax ginseng C. A. Meyer. Plant Cell Physiol. 46:947-954.   DOI
33 Wang, D., Q. Shi, X. Wang, M. Wei, J. Hu, J. Liu, and F. Yang. 2010. Influence of cow manure vermicompost on the growth, metabolite contents, and antioxidant activities of Chinese cabbage (Brassica campestris ssp. Chinensis). Biol. Fertil. Soils 46:689-696.   DOI
34 Wang, W., Z.Y. Zhang, and J.J. Zhong. 2005. Enhancement of ginsenoside biosynthesis in high-density cultivation of Panax notoginseng cells by various strategies of methyl jasmonate elicitation. Appl. Microbiol. Biotechnol. 67:752-758.   DOI
35 Xia, P., H. Guo, H. Zhao, J. Jiao, M.K. Keyholos, X. Yan, Y. Liu, and Z. Liang. 2016. Optimal fertilizer application for Panax notoginseng and effect of soil water on root rot disease and saponin contents. J. Ginseng Res. 40:38-46.   DOI
36 Yu, K.W., H.N. Murthy, E.J. Hahn, and K.Y. Paek. 2005. Ginsenoside production by hairy root cultures of Panax ginseng: influence of temperature and light quality. Biochem. Eng. J. 23:53-56.   DOI