• Title/Summary/Keyword: Biomass Burning

Search Result 134, Processing Time 0.026 seconds

Analysis on the Trend of the Utilization of Woody Biomass - Production, supply, and practical use of woody biomass - (목질 바이오매스의 활용에 대한 동향 분석 - 목질 바이오매스의 생산·공급, 그리고 활용을 중심으로 -)

  • Ahn, Byeong-Il;Kim, Chul-Hwan;Lee, Ji-Young;Shim, Sung-Woong;Jo, Hu-Seung;Lee, Gyeong-Sun;Lee, Jee-Young
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.4
    • /
    • pp.32-42
    • /
    • 2012
  • Wood biomass including forest residues, waste wood, and construction residuals has been widely generated in Korea, but forest biomass from the National Forest Management Operation Project plays a big role in generating wood biomass. Unfortunately the promotion policy of woody energy organized by the Forest Service in Korea concentrates more on demand creation rather than on supply expansion. Therefore, in order to utilize insufficient wood resources effectively, it is greatly required to develop uses for maximizing their added value. In particular, more attention to the use of the second generation biomass has been paid in foreign countries because there is a threshold that the first generation biomass cannot produce enough biofuel without threatening food supplies and biodiversity. In Korea, wood pellets are regarded as the alternative clean fuels to oils and coals that emit green house gases into the atmosphere. However, using wood as pellet raw materials can not be an economic way because the value of wood disappears right after burning in the boiler in spite of its contribution to the decrease of carbon emission. Differently from wood pellets, kraft pulping process using woody biomass produces black liquor as a by-product which can be used to generate electricity, bioenergy and biochemicals through gasification. Thus, it can be more economical to make a torrefaction of lignocellulosic biomass such as low-quality wood and agricultural leftovers as raw materials of pellets.

A Study on Combustion Characteristics of wood pellets (목재 펠릿의 연소특성에 관한 연구)

  • Sim, Bong Seok;Kim, Hyouck Ju;Park, Hwa Choon;Kim, Jong Jin;Choi, Kyu Sung;Kang, Sae Byul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.104.1-104.1
    • /
    • 2010
  • We investigated combustion characteristics of wood pellets in a combustion equipment with adjusting amount of flue gas. Maximum temperature in a combustion chamber was $850^{\circ}C$. Higher heating Value of a domestic wood pellet tested is 19.1 MJ/kg and water content was 8.3%. Amount of flue gas causes big effect on burning characteristics in $450{\sim}600^{\circ}C$. Wood pellet does not burn in low temperature atmosphere less than $450^{\circ}C$ and low flue gas flow rate. We made burning the pellet that is made in Korea, USA, Chile and Canada. Color of foreign pellets are bright brown and they made by mainly sawdust. Korean pellet is a dark brown color because it contains bark. There are some differences in the result of elementary analysis and technical analysis. According to the result of burning experiment, burning times of each countries's pellet are similar.

  • PDF

Emission Characteristics of Black Carbons Generated by Wood Combustion through a Stove (목재연료 사용에 따른 블랙카본의 배출특성)

  • Yi, Chi Yeong;Choi, Bong Seok;Sa, Jae Hwan;Jeon, Eui-Chan;Choi, Sang Jin;Park, Seong Kyu
    • Journal of Climate Change Research
    • /
    • v.4 no.1
    • /
    • pp.41-49
    • /
    • 2013
  • Recent findings have revealed that black carbon is one of the substantial materials affecting climate change along with greenhouse gases. Usually, black carbon is generated by incomplete combustion of biomass and deposited on snow and ice surface, resulting in increasing adsorption of radiant energy and accelerating ice melting. However, it is still questionable what the emission characteristics of black carbons from biomass combustion is. We investigated the emission characteristics of black carbon generated from a wood stove in this study. We found that the emission of black carbon was highly dependent upon combustion temperature and the amount of combustion air supplied. The emission factors were 1.01 g-BC/kg-Oak for fireplace wood burning under incomplete combustion, 0.37 g-BC/kg-Oak for fireplace wood burning under complete combustion and 0.29 g-BC/kg-Oak for small wood-stove burning.

Exploration of Alternative Raw materials to Forest Biomass for Pellets (숲가꾸기 산물을 이용한 펠릿의 원료 적성 연구)

  • Kim, Seong-Ho;Kim, Cheol-Hwan;An, Byeong-Il;Lee, Ji-Yeong;Momin, Md.;Yeasmin, Shabina;Park, Hyeon-Jin;Gwak, Hye-Jeong;Kim, Gyeong-Cheol
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2011.04a
    • /
    • pp.171-178
    • /
    • 2011
  • During the last decades, global warming from the increased amount of greenhouse gases, mainly carbon dioxide has become a major political and scientific issue. Burning fossil fuels (natural gas, coal and oil) releases $CO_2$, which is also a major cause of global warming. Among the clean environment, wood pellets are considered as promising renewable fossil fuels because of clean burning characteristics, reduction of particulate and NOx emission from combustion. In Korea, more than 50% pellets have to be imported every year because of shortage of feedstocks. On the other hand, about 80% of wood pulps are greatly dependent upon overseas products due to limited forest resources. Under this situation, this study explored how efficiently we have to use forest biomass instead of total dependence on wood as raw materials for pellets.

  • PDF

Sensitivity Analysis of the CMB Modeling Results by Considering Photochemical Degradation of Polycyclic Aromatic Hydrocarbons (PAHs) in the Seoul atmosphere (서울 대기에서 PAHs 광화학반응을 고려한 CMB 수용모델 결과 검토)

  • Cho, Ye Seul;Jung, Da Bin;Kim, In Sun;Lee, Ji Yi;Kim, Yong Pyo
    • Particle and aerosol research
    • /
    • v.10 no.1
    • /
    • pp.9-17
    • /
    • 2014
  • Several studies have been carried out on the source contribution of the particulate Polycyclic Aromatic Hydrocarbons (PAHs) over Seoul by using the Chemical Mass Balance Model (CMB)(Lee and Kim, 2007; Kim et al., 2013). To confirm the validity of the modeling results, the modified model employing a photochemical loss rate along with varying residence times and the standard model that considers no loss were compared. It was found that by considering the photochemical loss rate, a better performance was obtained as compared to those obtained from the standard model in the CMB calculation. The modified model estimated higher contributions from coke oven, transportation, and biomass burning by 4 to 8%. However, the order of the relative importance of major sources was not changed, coke oven followed by transportation and biomass burning. Thus, it was concluded that the standard CMB model results are reliable for identifying the relative importance of major sources.

Fuel Research of suljigemi Pellet using Biomass (바이오매스를 이용한 술지게미 펠릿의 연료 연구)

  • Kim, Dae-Nyeon;Choi, Jeong-Won
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.3
    • /
    • pp.109-115
    • /
    • 2018
  • This paper proposes the method to develop the fuel of suljigemi pellet using agricultural by-products the occurred during the manufacturing of alcohol. The goal of the development of suljigemi using biomass is to make the pellet fuel of high calorie. The suljigemi pellet is difficult to recycle waste in the manufacture company of alcohol. suljigemi pellet has the effect of zero emission as the soil conditioner using ash after burning. Also suljigemi pellet has the reduction effect of carriage fee, fuel economy and low-cost high-efficiency effects, environmentally clean fuel as CO2 emissions savings. So the technologies of the suljigemi fuel pellet are developing low carbon, green growth renewable energy fuel through futuristic energy system will be. In experiments, suljigemi pellets confirmed the calories by about 10% higher than wood pellets with the same conditions.

Study of Kraft Pulp Properties for Kraft Pulping from Forest Biomass (산림바이오매스의 크라프트 펄프화를 위한 펄프 적성 연구)

  • Park, Hyeon-Jin;Kim, Cheol-Hwan;Lee, Ji-Yeong;Sheikh, Mominul Islam;Kim, Seong-Ho;Kim, Gyeong-Cheol;Sim, Seong-Ung;Jo, Hu-Seung
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2011.10a
    • /
    • pp.143-149
    • /
    • 2011
  • In recent, many forest residues have been generated by the National Forest Management Operation. Unfortunately, most of the forest residues are supposed to be used as raw materials for burning fuels like wood pellets. In this study, we investigated whether or not this forest biomass mixed in various ages and species could be used as raw materials for making kraft pulps in a view of optical properties.

  • PDF

Characterization of fine organic aerosols from biomass burning emissions using FTIR method (분광학적 방법을 이용한 바이오매스 연소 배출 유기 입자의 화학적 특성)

  • Son, Se-Chang;Park, Tae-Eon;Park, Seungshik
    • Particle and aerosol research
    • /
    • v.17 no.4
    • /
    • pp.125-132
    • /
    • 2021
  • Fresh PM2.5 smokes emitted from combustion of four biomass materials (pellet, palm fruit fiber (PFF), PKS, and sawdust) in a laboratory-controlled environment were characterized using an attenuated total reflectance-fourier transform infrared (ATR-FTIR) technique. In smoke samples emitted from combustion of pellets, PFF and PKS, which is being used as boiler fuels for greenhouses in rural areas, the organic carbon/elemental carbon (OC/EC) ratios in PM2.5 were very high (14.0-35.5), whereas in sawdust smoke samples they were significantly low (<4.0) due to the combustion method close to flaming combustion. ATR-FTIR analysis showed that OH(3400-3250 cm-1), CH3(2958-2840 cm-1), CH2(2910 cm-1 and 2850 cm-1), ketone(1726-1697 cm-1), C=C(1607-1606 cm-1 and 1515-1514 cm-1), lignin (1463-1462 cm-1 and 1430-1428 cm-1) and -NO2(1360-1370 cm-1) peaks were identified in all biomass burning (BB) smoke samples. However, additional peaks appeared depending on the type of biomass. Among the four types of biomass materials, an additional peak of the methylene group CH3(2872-2870 cm-1) appeared only in PFF and PKS smoke samples, and a peak of C=O(1685 cm-1) was also confirmed. And in the case of PKS smoke samples, a peak of aromatic C=C(1593 cm-1 and 1476 cm-1) that did not appear in other BB samples was also observed. This indicates that the molecular structure of organic compounds emitted during BB differs depending on the type of biomass materials. The results of this study are expected to provide valuable information to more specifically reveal the effect of BB on PM2.5 collected in the atmospheric environment.

The Measurements of Biomass Burning Aerosols from GLI Data (GLI 자료를 이용한 생체 소각 에어러솔 측정에 대한 연구)

  • Lee Hyun Jin;Fukushima Hajime;Ha Kyung-Ja;Kim Jae Hwan
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.4
    • /
    • pp.273-285
    • /
    • 2005
  • This study has investigated the suitable wavelength for detecting biomass burning aerosols. We have performed the analysis of the wavelength at 380nm in near-UV, 400nm, 412nm, 460nm, and 490nm in visible, and 2100nm in shortwave infrared regions from the Global Imager measurements. It is well known that the UV bands have the advantage of the aerosols retrieval due to the low surface reflectance and a weak effect of Bidirectional Reflectivity Distribution Function. However, the pure surface reflectances of shortwave visible bands, except 412nm, are as low as that of 380nm in near-UV over northeast Asia. In order to detect the aerosol signal, we have retrieved the aerosol reflectance as a function of wavelength based on the surface reflectivity contrast method for the period of May 2003. It is interesting that the retrieved aerosol reflectance with 460nm is slightly more sensitive than that with 380nm. Additionally, we have applied the TOMS aerosol index method to determine the best pair for biomass burning aerosols and found that the pair of 380 and 460nm results in the best signal for retrieving aerosols.

Biomass Structure and Dry Matter Dynamics in a Fire Influencing Montane Subtropical Humid Grassland, Western Ghats Southern India

  • Paulsamy, S;Manian, S.;Udaiyan, K.;Arumugasamy, K.;Nagarajan, N.;Kil, B.S.
    • The Korean Journal of Ecology
    • /
    • v.24 no.4
    • /
    • pp.227-232
    • /
    • 2001
  • The biomass structure for three major components viz., the dominant grass, Chrysopogon zeylanicus Thw., the 'other grasses' and the'remaining species'and dry matter dynamics for total community were studied over a period of one year in an annual fire influenced subtropical humid grassland community in Western Ghats, India. The biomass of aboveground, belowground and litter compartments were high as in other humid grasslands and generally have positive correlation with rainfall, rainy days and relative humidity with the exception of litter parts. The above and belowground net primary productions (4,561 and 722 g/㎡, respectively) were also higher and were comparable with other humid tropical grasslands. The turnover of organic matter was rapid, Of the total input of 14.47 g/㎡ into the system, about 86.3% was allocated to above ground parts and 13.7% to below ground parts. The total disappearance was 2.56 g/㎡ and it was accounted to be 17.68% of the total output. The net surplus of dry matter (82.32%) in the post fire community indicates that the grassland was maintained in a seral stage. Hence it is suggested that prescribed burning may keep this ecosystem in a highly productive and seral stage.

  • PDF