Browse > Article
http://dx.doi.org/10.7780/kjrs.2005.21.4.273

The Measurements of Biomass Burning Aerosols from GLI Data  

Lee Hyun Jin (Department of Atmospheric Science, Pusan National University)
Fukushima Hajime (School of High-Technology for Human Welfare, Tokai University)
Ha Kyung-Ja (Department of Atmospheric Science, Pusan National University)
Kim Jae Hwan (Department of Atmospheric Science, Pusan National University)
Publication Information
Korean Journal of Remote Sensing / v.21, no.4, 2005 , pp. 273-285 More about this Journal
Abstract
This study has investigated the suitable wavelength for detecting biomass burning aerosols. We have performed the analysis of the wavelength at 380nm in near-UV, 400nm, 412nm, 460nm, and 490nm in visible, and 2100nm in shortwave infrared regions from the Global Imager measurements. It is well known that the UV bands have the advantage of the aerosols retrieval due to the low surface reflectance and a weak effect of Bidirectional Reflectivity Distribution Function. However, the pure surface reflectances of shortwave visible bands, except 412nm, are as low as that of 380nm in near-UV over northeast Asia. In order to detect the aerosol signal, we have retrieved the aerosol reflectance as a function of wavelength based on the surface reflectivity contrast method for the period of May 2003. It is interesting that the retrieved aerosol reflectance with 460nm is slightly more sensitive than that with 380nm. Additionally, we have applied the TOMS aerosol index method to determine the best pair for biomass burning aerosols and found that the pair of 380 and 460nm results in the best signal for retrieving aerosols.
Keywords
remote sensing; biomass homing aerosols; GLI;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gordon, H. R. and M. Wang, 1994. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with Sea WiFS: A preliminary algorithm, Applied Optics, 33: 443-452   DOI
2 Herman, J. R. and E. A. Celarier, 1997a. Earth surface reflectivity climatology at 340-380 nm from TOMS data, Journal of Geophysical Research, 102: 28003-28011   DOI
3 Holben, B. N., D. Tame, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. S. Schafer, B. Chatenet, F. Lavenu, Y. J. Kaufman, J. Bande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karneli, N. T. O'Neill, C. Pietras, R. T Pinker, K. Voss, and G. Zibordi, 2001. An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET, Journal of Geophysical Research, 106: 1206712097   DOI
4 Kaufman, Y. J., D. Tame, H. R. Gordon, T. Nakajima, J. Lenoble, R. Frouin, H. Grassl, B. M. Herman, M. D. King, and P. N. Teillet, 1997. Passive remote sensing of tropospheric aerosol and atmospheric correction for the aerosol effect, Journal of Geophysical Research, 102: 16815-16830   DOI
5 King, M. D., Y. J. Kaufman, D. Tame, and T. Nakajima, 1999. Remote sensing of tropospheric aerosols from space: Past, Presents, and Future, BuIltin of the American Meteorological Society, 80: 2229-2259   DOI
6 McKenzie, R. L., M. Kotkamp, and W. Ireland, 1996. Upwelling UV spectral irradiances and surface albedo measurements at Lauder, New Zealand, Geophysical Research Letters, 23, 1757-1760   DOI   ScienceOn
7 Torres, O., P. K. Bhartia, J. R. Herman, A. Sinyuk, P. Ginoux, and B. Holben, 2002. A long-tern record of aerosol optical depth from TOMS observations and comparison to AEROENT measurements, Journal of the Atmospheric Sciences, 59: 398-413   DOI   ScienceOn
8 von Hoyningen-Huene, W., M. Freitag, and J. B. Burrows, 2003. Retrival of aerosol optical thickness over land surfaces from top-of-atmosphere radiance, Journal of Geophysical Research, 108: doi:10.1029/2001JD002018   PUBMED
9 Wen, S. and W. I. Rose, 1994. Retrieval of sizes and total masses of particles in volcanic clouds using AVHRR bands 4 and 5, Journal of Geophysical Research, 99: 5421-5431   DOI
10 이권호, 김영준,2004. 인공위성 자료와 AEROENT관측자료를 이용한 러시아산불 시 발생한 에어로졸의 중장거리 모니터링, 한국대기환경학회지, 20:437-450
11 Soufflet, v., D. Tame, A. Royer, and N. T. O'Neill, 1997. Remote sensing of aerosols over boreal forest and late water from AVHRR data, Remote Sensing of Environment, 60: 22-34   DOI   ScienceOn
12 Hsu, N. C., S. C. Tsay, M. D. King, and J. R. Herman, 2004. Aerosol retrievals over brightreflecting source regions, IEEE Transactions on Geoscience and Remote Sensing, 42: 557-569   DOI   ScienceOn
13 Reid, J. W., J. E. Kinney, D. L. Westphal, B. N. Holben, E. J. Welton, Si-C. Tsay, D. F. Eleutero, J. R. Campbell, S. A Christopher, P. R. Colarco, H. H. Jonsson, J. M. Livingston, H. B. Maring, M. L. Meier, P. Pilewskie, J. M. Pilewskie, J. Pro spero, E. A. Reid, L. A. Remer, P. B. Russell, D. L. Savoie, A. Smirnonv, and D. Tame, 2003. Analysis of measurements of Saharan dust by airborne and ground-based remote sensing methods during the Puerto Rico Dust Experiment (PRIDE), Journal of Geophysical Research, 108: doi:10.1029/2002JD002493郴ヨ⨀?잖⨀飴ヨ⨀뤏덐ꣴヨ⨀렏頏탴ヨ⨀਀탴ヨ⨀灤—⨀ᤀက灤—⨀ヨ⨀Āヨ⨀ヨ⨀̀ヨ⨀ヨ⨀Ȁヨ⨀?ヨ⨀Ȁ?ヨ⨀ —⨀Ȁ —⨀ࠅ—⨀Ȁࠅ—⨀᠅—⨀Ȁ᠅—⨀ —⨀Ȁ —⨀怍—⨀Ȁ怍—⨀䠑—⨀Ȁ䠑—⨀䀓—⨀Ȁ䀓—⨀⠗—⨀Ȁ⠗—⨀怗—⨀Ȁ怗—⨀頗—⨀Ȁ頗—⨀—⨀Ȁ—⨀—⨀Ȁ—⨀젣—⨀Ȁ젣—⨀⠨—⨀Ȁ⠨—⨀ာ—⨀Ȁာ—⨀—⨀Ȁ—   DOI
14 Remer, L. A, D. Tanre, Y. J. Kaufman, C. Ichoku, S. Mattoo, R. Levy, D. A Chu, B. Holben, O. Dubovik, A Smironov, J. V. Martins, R. R. Li. and Z. Ahmad, 2002. Validation of MODIS aerosol retrieval over ocean, Geophysical Research Letters, 29: doi:10.1029/2001GL013204   DOI
15 Nakajima, T. and M. Tanaka, 1988. Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation, Journal of Quantitative Spectroscopy and Radiative Transfer, 40: 51-69   DOI   ScienceOn
16 Dubovik, O., B. Holben, T. F. Eck, A. Smirnov, Y. J. Kaufman, M. D. King, D. Tame, and I. Slutsker, 2002. Variability of absorption and optical properties of key aerosol types observed in worldwide locations, American Meteorological Society, 59: 590-608
17 Herman, J. R., P. K. Bhartia, O. Torres, C. Hsu, C. Seftor, and E. Celarier, 1997b. Global distribution of UV -absorbing aerosols from . Nimbus7/TOMS data, Journal of Geophysical Research, 102: 16911-16922   DOI
18 Houghton, J. T., L. G. Meira Filho, B. A. Callander, N. Harris, A. Kattenberg, and K. Maskell, Eds., 1996. Climate Change 1995: The science of Climate Change, Intergovernmental Panel on Climate Change, Cambrige University Press, USA
19 Hauser, A., D. Oesch, and S. Wunder le, 2004. NOAA AVHRR derived Aerosol Optical Depth (AOD) over Land: A comparison with AERONET data, Optica Puray Aplicada, 37: 3131-3135
20 Hsu, N. C, J. R. Herman, O. Torres, B. N. Holben, D. Tanre, T. F. Eck, A. Smirnov, B. Chatenet, and F. Lavenu, 1999. Comparisons of the TOMS aerosol index with Sun-photometer aerosol optical thickness: Results and applications, Journal of Geophysical Research, 104: 6269-6279   DOI
21 Fukushima, H. and M. Toratani, 1997. Asian dust aerosol: Optical effect on satellite ocean color signal and a scheme of tis correction, Journal of Gophysical Research, 102: 17119-17130   DOI
22 McClain, C. R, G. Feldman, and W. Esaias, 1993. Biological oceanic productivity, in The Atlas of Satellite Observations Related to Global Change, edited by R Gurney, J. L. Foster, and C. L. Parkinson, Cambridge University Press, USA
23 Young, A. T., 1980. Revised depolarization corrections for atmospheric extinction, Applied Optics, 19: 3427-3428   DOI
24 Singh, S. M. and G. Ferrier, 1997. Observation of intense sunglint in 3.7${\mu}m$ channel of the AVHRR, International Journal of Remote Sensing, 18: 3521-3533   DOI
25 이권호,김정은,김영준,김 준,2004. 2003년 5월 러시아지역에서 발생한 산불로 인한 스모크 에어로졸 플룸의 영향, 한국대기환경학회지, 20:603-613
26 Schwartz, S. E. and Coauthors, 1995. Group report: Connections between aerosol properties and forcing of climate, Aerosol Forcing of Climate, R. J. Charlson and J. Heintzenberg, Eds., John Wiley and Sons: 251-280
27 Nakajima, T. Y., T. Nakajima, N. Nakajima, H. Fukushima, N. Kuji, A Uchiyama, and M. Kishino, 1998. Optimization of the advanced earch observing satellite II Global Imager channels by use of radiative transfer calculations, Applied Optics, 37: 3149-3163   DOI   PUBMED