• 제목/요약/키워드: Biological activated carbon treatment

Search Result 109, Processing Time 0.031 seconds

Investigating of Nitrosamines in Small tributary rivers, Sewage Tretment Plants and Drinking Water Treatment Plants (하천수 및 상하수도처리공정에서의 니트로사민류 조사)

  • Kim, Gyunga;Roh, Jaesoon;Bin, Jaehun;Kim, Changwon
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.446-453
    • /
    • 2010
  • This study was investigated nine nitrosamines in small tributary rivers, sewage treatment plants (STPs) and drinking water treatment plants. They are N-nitrosodimethylamine (NDMA), N-nitrosomethylethylamine (NMEA), N-nitrosodiethylamine (NDEA), N-nitrosopyrrolidine (NPYR), N-nitrosodi-n-propylamine (NDPA), N-nitrosomorpholine (NMOR), N-nitrosopiperidine (NPIP), N-nitrosodi-n-butylamine (NDBA) and N-nitrosodiphenylamine (NDPHA). The nine nitrosamines were analyzed by gas chromatography mass spectrometry (GC/MS) using solid phase extraction (SPE) with a coconut charcoal cartridge. Among the nine nitrosamines, NDMA, NMEA, NDEA, NDPA NDBA and NDPHA were detected in small tributary rivers and sewage tretment plants. In small tributary rivers, NDMA, NMEA, NDEA, NDPA, NDBA and NDPHA were obtained as ND~16.4 ng/L, ND~17.7 ng/L, ND~102.4 ng/L, ND~455.4 ng/L, ND~330.1 ng/L and ND~161.0 ng/L, respectively. Also NDMA, NMEA, NDEA, NDPA and NDBA were investigated ND~821.4 ng/L, 22.5~55.4 ng/L, 53.2~588.5 ng/L, ND~56.6 ng/L and ND~527.9 ng/L in STPs, respectively. In drinking water treatment plants, NMEA and NDEA concentration were increased to as high as 38.8 ng/L after ozonation process. However nitrosamines were decreased subsequent biological activated carbon (BAC) treatment process. It was supposed that nitrosamines were formed by $O_3$ oxidation and were removed by biodegradation of BAC.

Removal of Herbicide Molinate during treatment Processes for Drinking Water (상수처리과정 중 제초제 molinate의 제거)

  • Park, Ju-Hwang;Park, Jong-Woo;Kim, Jong-Soo;Kim, Jang-Eok
    • Applied Biological Chemistry
    • /
    • v.45 no.3
    • /
    • pp.145-151
    • /
    • 2002
  • Molinate, a thiolcarbamate herbicide widely used for control weeds in paddy soil, has been suspected for a possibile transportation into surface water due to its relatively high solubility in water. This study was performed to know that how much molinate could be removed during treatment processes for drinking water. The removal effciency of molinate in water was negligible in treatment process of polyaluminium chloride for coagulation. Molinate was gradually decreased up to 60.2% during contact time of 4 hours when chloride, an disinfectant used in water treatment system was treated. And in an hour treatment of ozone, molinate removal ranged $28.9%{\sim}58%$ However by treatment system of granular activated carbon, molinate was removed 93.9 to 100% at all concentrations used with a range of concentrations of granular activated carbon treated. The removal effciency of whole system simulated with removal efficiencies of molinate in each step of treatment processes was 99.5%. Therefore, if molinate happen to come into water treatment facilities, it could be removed effectively through the treatment processes.

A Study on Microbial Degradation for Removal of Toluene Vapour by Biofilter (Bio 필터를 이용한 Toluene 제거에서 미생물분해에 관한 연구)

  • 하상안;강신묵
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.1
    • /
    • pp.24-30
    • /
    • 1999
  • A biological filter for treatment of toluene among volatile organic compounds was studied. The investigation was conducted using specially built stainless steel columns packed with granular activated carbon and cold for removal of toluene. The G.A. and mold as filter material was also coated with Pseudomonas putida microorganisms.The biofilter unit was operated in the condition of moisture content vairation at gas loading rate of 12.5 l/min. Gaseous toluene taken from tedlar bag was analyzed by the use of G.C equipped with F.I.d detector. The removal efficiency of gaseous toluene was 95% at average inlet concentration of 950 ppm during bio-degradation operating condition. Effective removal efficiency was obtained with moisture content 27.5% at activated carbon and 32% at mold in this study. The effective operating condition were obtained with pH 6-8, temperature 28-42℃ for microbial degradation at gas loading rate of 12.5 l/min in packed material.

  • PDF

Adsorption of Specific Organics in Water on GAC and Regeneration of GAC by Countercurrent Oxidative Reaction

  • Ryoo, Keon-Sang;Kim, Tae-Dong;Kim, Yoo-Hang
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.6
    • /
    • pp.817-824
    • /
    • 2002
  • Granular activated carbon(GAC) is highly effective in removing organic compounds which are resistant to biological disintegration in wastewater treatment. However, GAC has reached its full adsorptive capacity, GAC needs to be regenerated before it can be used for a further adsorption cycle. Countercurrent oxidative reaction (COR) technique has been developed and evaluated for the regeneration of spent GAC. Various parameters such as flame temperature, the loss of carbon, destruction and removal efficiency (DRE) of organic compounds, surface area, surface structure, adsorptive capacity, etc. were examined to determine the performance of COR. The results of these tests showed that adosorptive capacity of regenerated GAC was completely recovered, the loss of carbon was controllable, flame temperature was high enough to insure complete destruction and removal $(\geq99.9999%)$ of specific organics of interest, polychlorinated biphenyls (PCBs), that are thermally stable, and on formation of toxic byproducts such as polychlorinated dibenzo-p-dioxins (PCDDs) or polychlorinated dibenzofurans (PCDFs) were detected during the regeneration process. The COR technique is environmentally benign, easy to use and less copital intensive than other available regeneration technologies.

Bacterial attachment on granular activated carbon and effect of chlorine disinfection (입상활성탄 부착세균과 염소소독 연구)

  • Baek, Youngae;Joe, Woohyun;Hong, Byungeui;Choi, Youngjune;Ahn, Seoungkoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.3
    • /
    • pp.339-344
    • /
    • 2009
  • The authors investigated the bacterial community attached to granular activated carbon(GAC) particles and the susceptibility of the community to chlorine disinfection. The study was carried out at the G Water Treatment Plant in Seoul, which was in full-scale operation. Bacteria attached to the surface of GAC increased gradually with treatment from $0.4{\times}106{\sim}8.5{\times}106 CFU/g$. TOC removal was under 1.0 mg/L due to increased bacterial community on the surface of GAC. It was found that TOC removal was closely related with physical and biological parameters such as pore volume and the number of attached bacteria. When the washed and the attached cells were disinfected with 1.0mg/L of chlorine for 1 hour, the washed cells with chlorination could be controlled, but the number of the attached cells increased gradually. The results suggest a possibility that the treatment and disinfection barriers can be penetrated and pathogenic bacteria may break into the drinking water supplying system.

A Review on Adsorbent Materials for Industrial Wastewater Treatment (산업폐수 처리용 흡착 소재 연구 동향)

  • Sang Hoon Kim;Suk Soon Choi
    • Applied Chemistry for Engineering
    • /
    • v.35 no.5
    • /
    • pp.379-384
    • /
    • 2024
  • Industrial wastewater contains various harmful pollutants, and effectively treating these pollutants is crucial for environmental protection and public health. This review paper examines various adsorbent materials used in industrial wastewater treatment. The characteristics and applications of key adsorbents, such as activated carbon, zeolite, nanomaterials, and bioadsorbents, are introduced, and the advantages and disadvantages of each material are discussed. Furthermore, the paper suggests directions for the improvement of adsorbent materials and future research, emphasizing the importance of developing sustainable materials and utilizing nanotechnology. The need for modeling and optimization of adsorption processes is also highlighted. This paper underscores the significance of adsorbent materials in industrial wastewater treatment and provides a guide for future research directions.

Synthetic Musk Compounds Removal Using Biological Activated Carbon Process in Drinking Water Treatment (정수처리용 생물활성탄 공정에서의 인공 사향물질의 제거 특성)

  • Seo, Chang-Dong;Son, Hee-Jong;Yoom, Hoon-Sik;Choi, Dong-Hoon;Ryu, Dong-Choon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.3
    • /
    • pp.195-203
    • /
    • 2012
  • In this study, The effects of three different biological activated carbon (BAC) materials (each coal, coconut and wood based activated carbons) and anthracite, empty bed contact time (EBCT) and water temperature on the removal of MK, HHCB and AHTN in BAC filters were investigated. Experiments were conducted at three water temperatures (5, 15 and $25^{\circ}C$) and four EBCTs (5, 10, 15 and 20 min). The results indicated that coal based BAC retained more attached bacterial biomass on the surface of the activated carbon than the other BAC, increasing EBCT or increasing water temperature increased the synthetic musk compounds (SMCs) removal in BAC columns. The kinetic analysis suggested a first-order reaction model for MK, HHCB and AHTN removal at various water temperatures (5, 15 and $25^{\circ}C$). The pseudo-first-order biodegradation rate constants and half-lives were also calculated for MK, HHCB and AHTN removal at 5, 15 and $25^{\circ}C$. The pseudo-first-order biodegradation rate constants and half-lives of MK, HHCB and AHTN ranging from 0.0082 $min^{-1}$ to 0.4452 $min^{-1}$ and from 1.56 min to 84.51 min could be used to assist water utilities in designing and operating BAC filters for SMCs removal.

외부 반송이 있는 생물활성탄담체(BACC) 공정에 의한 오수 중 질소${\cdot}$인의 동시 제거

  • Lee, Ho-Gyeong;Gwon, Sin;Jo, Mu-Hwan
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.414-417
    • /
    • 2000
  • BACC(Biological Activated Carbon Cartridge)process is a newly developed biological process to remove organic compounds, nitrogen, and phosphorus with activated carbon granules in iron fixed-frame cartridge type. The largest defect of previous BACC process was denitrification inefficiency. The removal efficiencies of nitrogen and phosphorous with external recycle ratios $100{\sim}200%$ for synthetic wastewater were $69.8{\sim}90.1%$ and $62.18{\sim}91%$, respectively, since the modified BACC process with external recycle overcame the defect of BACC process. When external recycle ratio was increased more than 300%, T-N removal efficiencies were decreased. In the treatment of a real sewage using modified BACC process, $COD_{Cr}$, removal efficiencies were $96.3{\sim}97.5%$ which was similar to those of the previous BACC process. while T-N removal efficiencies was $88.3{\sim}95.7%$ which were superior to those of the previous BACC process.

  • PDF

Electricity Generation Coupled with Wastewater Treatment Using a Microbial Fuel Cell Composed of a Modified Cathode with a Ceramic Membrane and Cellulose Acetate Film

  • Seo, Ha-Na;Lee, Woo-Jin;Hwang, Tae-Sik;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.1019-1027
    • /
    • 2009
  • A noncompartmented microbial fuel cell (NCMFC) composed of a Mn(IV)-carbon plate and a Fe(III)-carbon plate was used for electricity generation from organic wastewater without consumption of external energy. The Fe(III)-carbon plate, coated with a porous ceramic membrane and a semipermeable cellulose acetate film, was used as a cathode, which substituted for the catholyte and cathode. The Mn(IV)-carbon plate was used as an anode without a membrane or film coating. A solar cell connected to the NCMFC activated electricity generation and bacterial consumption of organic matter contained in the wastewater. More than 99% of the organic matter was biochemically oxidized during wastewater flow through the four NCMFC units. A predominant bacterium isolated from the anode surface in both the conventional and the solar cell-linked NCMFC was found to be more than 99% similar to a Mn(II)-oxidizing bacterium and Burkeholderia sp., based on 16S rDNA sequence analysis. The isolate reacted electrochemically with the Mn(IV)-modified anode and produced electricity in the NCMFC. After 90 days of incubation, a bacterial species that was enriched on the Mn(IV)-modified anode surface in all of the NCMFC units was found to be very similar to the initially isolated predominant species by comparing 16S rDNA sequences.

Biological Treatment of Dyeing Wastewater Using Jet Loop Reactor with Activated Carton Supports (활성탄 담체가 포함된 Jet-Loop Reactor를 이용한 종합염색폐수처리)

  • 조무환;박종탁;이길호;류원률
    • KSBB Journal
    • /
    • v.17 no.3
    • /
    • pp.241-246
    • /
    • 2002
  • Today, many problems of dye-processing wastewaters were raised due to industry of dyeing and textiles. It is difficult to treat them perfectly because they contain many poorly degradable matters, such as surfactants, ethylene glycol, polyvinyl alcohol, and so on. To improve the performances of conventional physicochemical treatment and activated sludge process, new systems of combining jet-loop reactor (JLR) with physicochemical treatment were developed. Volumetric oxygen transfer coefficient ($k_{L}a$) of JLR was significantly larger than that of air-lift reactor. Also, for the effective treatment of dye-processing wastewater, JLR with active carbon supports (JLRAS) were investigated. Removal efficiency of BOD, $COD_{Mn}$, $COD_{Cr} and color were found as 99, 86, 84, 83%, respectively, when HRT was 8 hrs. And performance of JLRAS was rapidly restored after step change of $COD_{Mn}$ loading late. The optimal coagulant and dosage of second physicochemical treatment after JLRAS were polyferric sulfate and 130 mg/L, respectively, when removal efficiencies of $COD_{Mn} and color were 85 and 73%, respectively. In conclusion, this system enables the reduction of operation cost, and the effective removal of many organics.