Browse > Article

Electricity Generation Coupled with Wastewater Treatment Using a Microbial Fuel Cell Composed of a Modified Cathode with a Ceramic Membrane and Cellulose Acetate Film  

Seo, Ha-Na (Department of Biological Engineering, Seokyeong University)
Lee, Woo-Jin (Department of Biological Engineering, Seokyeong University)
Hwang, Tae-Sik (Department of Biological Engineering, Seokyeong University)
Park, Doo-Hyun (Department of Biological Engineering, Seokyeong University)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.9, 2009 , pp. 1019-1027 More about this Journal
Abstract
A noncompartmented microbial fuel cell (NCMFC) composed of a Mn(IV)-carbon plate and a Fe(III)-carbon plate was used for electricity generation from organic wastewater without consumption of external energy. The Fe(III)-carbon plate, coated with a porous ceramic membrane and a semipermeable cellulose acetate film, was used as a cathode, which substituted for the catholyte and cathode. The Mn(IV)-carbon plate was used as an anode without a membrane or film coating. A solar cell connected to the NCMFC activated electricity generation and bacterial consumption of organic matter contained in the wastewater. More than 99% of the organic matter was biochemically oxidized during wastewater flow through the four NCMFC units. A predominant bacterium isolated from the anode surface in both the conventional and the solar cell-linked NCMFC was found to be more than 99% similar to a Mn(II)-oxidizing bacterium and Burkeholderia sp., based on 16S rDNA sequence analysis. The isolate reacted electrochemically with the Mn(IV)-modified anode and produced electricity in the NCMFC. After 90 days of incubation, a bacterial species that was enriched on the Mn(IV)-modified anode surface in all of the NCMFC units was found to be very similar to the initially isolated predominant species by comparing 16S rDNA sequences.
Keywords
Noncompartmented microbial fuel cell; Mn(IV)-modified anode; Fe(III)-modified cathode; solar cell; wastewater treatment;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Arnold, E. G., L. S. Clesceri, and A. D. Eaton (eds.). 1992. Standard Methods for the Examination of Water and Wastewater, 18th Ed. American Public Health Association, NW Washington, DC
2 Chang, R. 1977. Physical Chemistry with Applications to Biological Systems, 2nd Ed. pp. 271-298. Macmillan Publishing Co., Inc. New York
3 Cheng, S. and B. E. Logan. 2007. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem. Commun. 9: 492-496   DOI   ScienceOn
4 Freguia, S., K. Rabaey, Z. Yuan, and J. Keller. 2008. Sequential anode-cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells. Water Res. 42: 1387-1396   DOI   ScienceOn
5 Jang, J. K., T. H. Pham, I. S. Chang, K. H. Kang, H. Moon. K. S. Cho, and B. H. Kim. 2004. Construction and operation of a novel mediator- and membrane-less microbial fuel cell. Proc. Biochem. 39: 1007-1012   DOI   ScienceOn
6 Na, B. K., B. I. Sang, D. W. Park, and D. H. Park. 2005. Influence of electric potential on structure and function of biofilm in wastewater treatment reactor: Bacterial oxidation of organic carbons coupled to bacterial denitrification. J. Microbiol. Biotechnol. 15: 1221-1228   ScienceOn
7 Park, D. H. and J. G. Zeikus. 2003. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotech. Bioeng. 81: 348-355   DOI   ScienceOn
8 Park, D. H., S. K. Kim, I. H. Shin, and Y. J. Jung. 2000. Electricity production in biofuel cell using modified graphite electrode with neutral red. Biotech. Lett. 22: 1301-1304   DOI   ScienceOn
9 Park, D. H., Y. K. Park, and E. S. Choi. 2004. Application of single-compartment bacterial fuel cell (SCBFC) using modified electrodes with metal ions to wastewater treatment reactor. J. Microbiol. Biotechnol. 14: 1120-1128   ScienceOn
10 Park, S. M., H. S. Kang, D. W. Park, and D. H. Park. 2005. Electrochemical control of metabolic flux of Weissella kimchii sk10: Neutral red immobilized in cytoplasmic membrane as electron channel. J. Microbiol. Biotechnol. 15: 80-85   ScienceOn
11 Zuo, Y., D. Xing, J. M. Regan, and B. E. Logan. 2008. Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell. Appl. Environ. Microbiol. 74: 3130-3137   DOI   ScienceOn
12 Rismani-Yazdi, H., S. M. Carver, A. D. Christy, O. H. Tuovinen. 2008. Cathodic limitations in microbial fuel cells: An overview. J. Power Sources 180: 683-694   DOI   ScienceOn
13 Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
14 Sawyer, B., G. Elenbogen, K. C. Rao, P. O'Brien, and C. Lue- Hing. 1993. Bacterial aerosol emission rates from municipal wastewater aeration tanks. Appl. Environ. Microbiol. 59: 3183- 3186   PUBMED   ScienceOn
15 Wakelin, S. A., M. J. Colloff, and R. S. Kookana. 2008. Effect of wastewater treatment plant effluent on microbial function and community structure in the sediment of a freshwater stream with variable seasonal flow. Appl. Environ. Microbiol. 74: 2659-2668   DOI   ScienceOn
16 Wang, K., S. McDermid, J. Li, N. Kremliakova, P. Kozak, C. Song, Y. Tang, J. Zhang, and J. Zhang. 2008. Preparation and performance of nano silica/Nafion composite membrane for proton exchange membrane fuel cells. J. Power Sources 184: 99-103   DOI   ScienceOn
17 Freguia, S., K. Rabaey, Z. Yuan, and J. Keller. 2007. Noncatalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells. Electrochem. Act. 53: 598-603   DOI   ScienceOn
18 Clauwaert, P., K. Rabaey, P. Aelterman, L. DeSchanmphelaire, T. H. Pham. P. Boecks, N. Boon, and W. Verstraete. 2007. Biological denitrification in microbial fuel cells. Environ. Sci. Technol. 41: 3354-3360   DOI   ScienceOn
19 Mota, C., M. A. Head, J. A. Ridenoure, J. J. Cheng, and F. L. de los Reyes III. 2005. Effects of aeration cycles on nitrifying bacterial populations and nitrogen removal in intermittently aerated reactors. Appl. Environ. Microbiol. 71: 8565-8572   DOI   ScienceOn
20 Kim, J. R., J. Dec, M. A. Bruns, and B. E. Logan. 2008. Removal of odors from swine wastewater by using microbial fuel cells. Appl. Environ. Microbiol. 74: 2540-2543   DOI   ScienceOn
21 Fan, Y., H. Hu, and H. Liu. 2007. Enhanced Coulombic efficiency and power density of air-cathode microbial fuel cells with an improved cell configuration. J. Power Source 171: 348-354   DOI   ScienceOn
22 Lowy, D. A. and L. M. Tender. 2008. Harvesting energy from the marine sediment-water interface III: Kinetic activity of quinineand antimony-based anode materials. J. Power Source 185: 70-75   DOI   ScienceOn
23 Park, D. H. and J. G. Zeikus. 2000. Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl. Environ. Microbiol. 66: 1292-1297   DOI   ScienceOn
24 Princic, A., I. Mahne, F. Megusar, E. A. Paul, and J. M. Tiedje. 1988. Effects of pH and oxygen and ammonium concentrations on the community structure of nitrifying bacteria from wastewater. Appl. Environ. Microbiol. 64: 3584-3590   ScienceOn
25 Min, B. and I. Angelidaki. 2008. Innovative microbial fuel cell for electricity production from anaerobic reactors. J. Power Sources 180: 641-647   DOI   ScienceOn
26 Biffinger, J. C., J. N. Byrd, B. L. Dudley, and B. R. Ringeisen. 2008. Oxygen exposure promotes fuel diversity for Shewanella oneidensis microbial fuel cells. Biosens. Bioelectr. 23: 820-826   DOI   ScienceOn
27 Lowy, D. A., L. M. Tender, J. G. Zeikus, D. H. Park, and D. R. Lovely. 2006. Harvesting energy from the marine sedimentwater interface II: Kinetic activity of anode materials. Biosens. Bioelectr. 21: 2058-2063   DOI   ScienceOn
28 Chaudhuri, S. K. and D. R. Lovley. 2003. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 21: 1229-1232   DOI   ScienceOn
29 Kuhl, M. and B. B. Jorgensen. 1992. Microsensor measurements of sulfate reduction and sulfide oxidation in compact microbial communities of aerobic biofilms. Appl. Environ. Microbiol. 58: 1164-1174   PUBMED   ScienceOn
30 Park, D. H., W. M. Lee, S. J. Jeon, and J. S. Rhee. 2003. Electricity production coupled to bacterial oxidation of organic compounds of sediments isolated from riverbed of Anyangcheon: Simulation for removal of organic compounds from sediment of water stream. J. Kor. Soc. Environ. Anal. 6: 29-34
31 Moon, H., I. S. Chang, and B. H. Kim. 2006. Continuous electricity production from artificial wastewater using a mediatorless microbial fuel cell. Bioresource Technol. 97: 621-627   DOI   ScienceOn
32 Jia, Y. H., H. T. Tran, D. H. Kim, S. J. Oh, D. H. Park, R. H. Zhang, and D. H. Ahn. 2008. Simultaneous organic removal and bio-electrochemical denitrification in microbial fuel cells. Bioprocess Biosyst. Eng. 31: 315-321   DOI   ScienceOn
33 Min, B., J. R. Kim, S. Oh, J. M. Regan, and B. E. Logan. 2005. Electricity generation from swine wastewater using microbial fuel cells. Water Res. 39: 4961-4968   DOI   ScienceOn
34 Moon, H., I. S. Chang, J. K. Jang, and B. H. Kim. 2005. Residence time distribution in microbial fuel cell and its influence on COD removal with electricity generation. Biochem. Eng. J. 27: 59-65   DOI   ScienceOn
35 Muyzer, G., E. C. de Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations using denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700   PUBMED   ScienceOn
36 Rabaey, K., N. Boon, S. D. Sicilano, M. Verhaege, and W. Verstraete. 2004. Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol. 70: 5373-5382   DOI   ScienceOn
37 Lawrence, F. R., D. R. Korber, B. D. Hoyle, J. W. Costerton, and D. E. Caldwell. 1991. Optical sectioning of microbial biofilms. J. Bacteriol. 173: 6558-6567   PUBMED
38 Zhao, F., F. Harmisch, U. Schr$\ddot{o}$der, F. Scholz, P. Bogdanoff, and I. Herrmann. 2005. Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem. Comm. 7: 1405-1410   DOI   ScienceOn
39 Shin, I. H., S. J. Jeon, H. S. Park, and D. H. Park. 2004. Catalytic oxidoreduction of pyruvate/lactate and acetaldehyde/ ethanol coupled to electrochemical oxidoreduction of $NAD^{+}$/ NADH. J. Microbiol. Biotechnol. 14: 540-546   ScienceOn
40 Park, D. H. and J. G. Zeikus. 2002. Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Appl. Microbiol. Biotechnol. 59: 58-61   DOI   ScienceOn