DOI QR코드

DOI QR Code

Synthetic Musk Compounds Removal Using Biological Activated Carbon Process in Drinking Water Treatment

정수처리용 생물활성탄 공정에서의 인공 사향물질의 제거 특성

  • 서창동 (부산광역시 상수도사업본부 수질연구소) ;
  • 손희종 (부산광역시 상수도사업본부 수질연구소) ;
  • 염훈식 (부산광역시 상수도사업본부 수질연구소) ;
  • 최동훈 (부산광역시 상수도사업본부 수질연구소) ;
  • 류동춘 (부산광역시 상수도사업본부 수질연구소)
  • Received : 2012.01.04
  • Accepted : 2012.03.28
  • Published : 2012.03.30

Abstract

In this study, The effects of three different biological activated carbon (BAC) materials (each coal, coconut and wood based activated carbons) and anthracite, empty bed contact time (EBCT) and water temperature on the removal of MK, HHCB and AHTN in BAC filters were investigated. Experiments were conducted at three water temperatures (5, 15 and $25^{\circ}C$) and four EBCTs (5, 10, 15 and 20 min). The results indicated that coal based BAC retained more attached bacterial biomass on the surface of the activated carbon than the other BAC, increasing EBCT or increasing water temperature increased the synthetic musk compounds (SMCs) removal in BAC columns. The kinetic analysis suggested a first-order reaction model for MK, HHCB and AHTN removal at various water temperatures (5, 15 and $25^{\circ}C$). The pseudo-first-order biodegradation rate constants and half-lives were also calculated for MK, HHCB and AHTN removal at 5, 15 and $25^{\circ}C$. The pseudo-first-order biodegradation rate constants and half-lives of MK, HHCB and AHTN ranging from 0.0082 $min^{-1}$ to 0.4452 $min^{-1}$ and from 1.56 min to 84.51 min could be used to assist water utilities in designing and operating BAC filters for SMCs removal.

재질별 생물활성탄(BAC) 및 안트라사이트 biofilter에서 EBCT 및 수온변화에 따른 인공사향물질(SMCs) 3종의 생물분해 특성을 조사한 결과 다음과 같은 결론을 얻을 수 있었다. 생물활성탄(BAC) 공정에서 인공사향물질 3종의 제거는 EBCT와 수온에 따라 큰 영향을 받으며, EBCT와 수온이 증가할수록 제거능이 증가하였다. 물질에 따른 제거능은 MK가 가장 높았고 다음으로 HHCB, AHTN 순이었다. 또한, 활성탄 재질에 따른 생물활성탄(BAC) 및 안트라사이트 biofilter에서의 인공사향물질 3종의 제거는 석탄계 재질의 BAC에서 생물분해능이 가장 높았고, 다음으로 목탄계, 야자계, 안트라사이트 순으로 조사되었다. 인공사향물질 3종에 대한 생물분해 속도상수($K_{biodeg}$)와 반감기($t_{1/2}$)는 수온이 $5{\sim}25^{\circ}C$일 때 0.0082~0.4452 $min^{-1}$와 1.56~84.51 min이었으며, 수온이 $15^{\circ}C$$25^{\circ}C$로 증가시켰을 때 $5^{\circ}C$에서의 반감기보다 3.1~9.3배 감소되었다.

Keywords

References

  1. Rimkus, G. G., "Polycyclic musk fragrances in the aquatic environment," Toxicol. Lett., 111, 37-56(1999). https://doi.org/10.1016/S0378-4274(99)00191-5
  2. Gatermann, R., Biselli, S., Huhnerfuss, H., Rimkus, G. G., Hecker, M. and Karbe, L., "Synthetic musks in the environment. Part 1: Species-dependent bioaccumulation of polycyclic and nitro musk fragrances in freshwater fish and mussels," Arch. Environ. Contam. Toxicol., 42, 437-446(2002). https://doi.org/10.1007/s00244-001-0041-2
  3. Hutter, H. P., Wallner, P., Moshammer, H., Hartl, W., Sattelberger, R., Lorbeer, G. and Kundi, M., "Blood concentrations of polycyclic musks in healthy young adults," Chemosphere, 59, 487-492(2005). https://doi.org/10.1016/j.chemosphere.2005.01.070
  4. Schmid, P., Kohler, M., Gujer, E., Zennegg, M. and Lanfranchi, M., "Persistent organic pollutants, brominated flame retardants and synthetic musks in fish from remote alpine lakes in Switzerland," Chemosphere, 67, S16-S21(2007). https://doi.org/10.1016/j.chemosphere.2006.05.080
  5. Raab, U., Preiss, U., Albrecht, M., Shahin, N., Parlar, H. and Fromme, H., "Concentrations of polybrominated diphenyl ethers, organochlorine compounds and nitro musks in mother's milk from Germany (Bavaria)," Chemosphere, 72, 87-95(2008). https://doi.org/10.1016/j.chemosphere.2008.01.053
  6. Balk, F. and Ford, R. A., "Environmental risk assessment for the polycyclic musks, AHTN and HHCB. I. Effect assessment and risk characterization," Toxicol. Lett., 111, 81- 94(1999). https://doi.org/10.1016/S0378-4274(99)00170-8
  7. Peck, A. M., "Analytical methods for the determination of persistent ingredients of personal care products in environmental matrices," Anal. Bioanal. Chem., 386, 907-939(2006). https://doi.org/10.1007/s00216-006-0728-3
  8. Chou, Y. J. and Dietrich, D. R., "Toxicity of nitromusks in early lifestages of South African clawed frog (Xenopus laevis) and zebrafish (Danio rerio)," Toxicol. Lett., 111(1-2), 17-25 (1999). https://doi.org/10.1016/S0378-4274(99)00167-8
  9. Heberer, T., "Occurrence, fate and assessment of polycyclic musk residues in the aquatic environment of urban area-ma review," Acta Hydrochim. Hydrobiol., 30(5-6), 227-243(2002). https://doi.org/10.1002/aheh.200390005
  10. Yang, J. J. and Metcalfe, C. D., "Fate of synthetic musks in a domestic wastewater treatment plant and in an agricultural field amended with biosolids," Sci. Total. Environ., 363, 149-165(2006). https://doi.org/10.1016/j.scitotenv.2005.06.022
  11. Bester, K., "Retention characteristics and balance assessment for two polycyclic musk fragrances (HHCB and AHTN) in a typical German sewage treatment plant," Chemosphere, 57, 863-870(2004). https://doi.org/10.1016/j.chemosphere.2004.08.032
  12. Horii, Y., Reiner, J. L., Loganathan, B. G., Kumar, K. S., Sajwan, K., and Kannan, K., "Occurrence and fate of polycyclic musks in wastewater treatment plants in Kentucky and Georgia, USA," Chemosphere, 68, 2011-2020(2007). https://doi.org/10.1016/j.chemosphere.2007.04.054
  13. Zeng, X., Sheng, G., Gui, H., Chen, D., Shao, W. and Fu, J., "Preliminary study on the occurrence and distribution of polycyclic musks in a wastewater treatment plant in Guandong, China," Chemosphere, 69, 1305-1311(2007). https://doi.org/10.1016/j.chemosphere.2007.05.029
  14. Shek, W. M., Murphy, M. B., Lam, J. C. W. and Lam, P. K. S., "Synthetic polycyclic musks in Hong Kong sewage sludge," Chemosphere, 71, 1241-1250(2008). https://doi.org/10.1016/j.chemosphere.2007.11.069
  15. Dsikowitzky, L., Schwarzbauer, J., and Littke, R., "Distribution of polycyclic musks in water and particulate matter of Lippe River (Germany)," Organic Geochemistry, 33, 1747-1758(2002). https://doi.org/10.1016/S0146-6380(02)00115-8
  16. Simonich, S. L., Federle, T. W., Eckhoff, W. S., Rottiers, A., Webb, S., Sabaliunas, D. and Wolf, W., "Removal of fragrance materials during U.S. and European wastewater treatment," Environ. Sci. Technol., 36(13), 2839-2847(2002). https://doi.org/10.1021/es025503e
  17. 서창동, 손희종, 이인석, 오정은, "낙동강 수계에서의 인공 사향물질 검출 특성," 대한환경공학회지, 32(6), 615-624(2010).
  18. Tanabe, S., "Synthetic musks-arising new environmental menace?," Mar. Pollut. Bull., 50, 1025-1026(2005). https://doi.org/10.1016/j.marpolbul.2005.07.005
  19. Nakata, H., "Occurrence of synthetic musk fragrances in marine mammals and sharks from Japanese costal waters," Environ. Sci. Technol., 39, 3430-3434(2005). https://doi.org/10.1021/es050199l
  20. Wan, Y., Wei, Q., Hu, J., Jin. X., Zhang, Z., Zhen, H. and Liu, J., "Levels, tissue distribution, and age-related accumulation of synthetic musk fragrances in Chinese sturgeon (Acipenser sinensis): comparison to organochlorines," Environ. Sci. Technol., 41, 424-430(2007). https://doi.org/10.1021/es061771r
  21. Schreurs, R. H., Sonneveld, E., van der Saag, P. T., Van der Burg, B., and Seinen, W., "Examination of the in vitro (anti) estrogenic, (anti)androgenic and (anti)dioxin-like activities of tetralin, indane and isochroman derivatives using receptorspecific bioassays," Toxicol. Lett., 156, 261-275(2005). https://doi.org/10.1016/j.toxlet.2004.11.014
  22. Schreurs, R. H., Sonneveld, E., Jansen, J. H., Seinen, W. and Van der Burg, "Interaction of polycyclic musks and UV filters with the estrogen receptor (ER), androgen receptor (AR) and progesterone (PR) in reporter gene bioassays," Toxicol. Sci., 83, 264-272(2005).
  23. Mori, T., Iida, M., Ishibashi, H., Kohra, S., Takao, Y., Takemasa, T. and Arizono, K., "Hormonal activity of polycyclic musks evaluated by reporter gene assay," Environ. Sci., 14, 195-202(2007).
  24. Bester, K., "Analysis of musk fragrances in environmental samples," J. Chromatogr. A, 1216, 470-480(2009). https://doi.org/10.1016/j.chroma.2008.08.093
  25. Paasivirta, J., Sinkkonen, S., Rantalainen, A. L., Broman, D. and Zebuhr, Y., "Temperature dependent properties of environmentally important synthetic musks," Environ. Sci. Pollut. Res. Int., 9(5), 345-355(2002). https://doi.org/10.1007/BF02987579
  26. Lee, I. S., Lee, S. H. and Oh, J. E., "Occurrence and fate of synthetic musk compounds in water environment," Water Res., 44, 214-222(2010). https://doi.org/10.1016/j.watres.2009.08.049
  27. 손희종, 정철우, 최영익, 장성호, "정수처리용 생물활성탄 (BAC) 부착 박테리아를 이용한 회분식 반응기에서의 Geosmin 생분해 특성," 대한환경공학회지, 32(7), 699-705(2010).
  28. APHA, AWWA, WEF, "Heterotrophic plate count," Standard Methods for the Examination of Water and Wastewater, Eaton, A. D., Clesceri, L. S. and Greenberg, A. E.(Eds), APHA, AWWA, WEF, Washington DC, 19th ED, pp. 9-31-9-35 (1995).
  29. Fuhrman, J. A. and Azam, F., "Thymidine incorporation as a measure of heterotrophic bacterio-plankton production in marine surface waters: evaluation and field results," Mar. Biol., 66, 109-120(1982). https://doi.org/10.1007/BF00397184
  30. Parsons, T. R., Maita, Y., and Lalli, C. M., A Manual of Chemical and Biological Methods for Seawater Analysis, Pergamon, New York(1984).
  31. Bell, R. T., Ahlgren, G. M. and Ahlgren, I., "Estimating bacterioplankton production by the [3H]thymidine incorporation in a eutrophic Swedish Lake," Appl. Environ. Microbiol., 45, 1709-1721(1983).
  32. 손희종, 유수전, 노재순, 유평종, "정수처리에서의 생물활성탄 공정," 대한환경공학회지, 31(4), 308-323(2009).
  33. Hernández Leal, L., Vieno, N., Temmink, H., Zeeman, G. and Buisman, C. J. N., "Occurrence of xenobiotics in gray water and removal in three biological treatment systems," Environ. Sci. Technol., 44(17), 6835-6842(2010). https://doi.org/10.1021/es101509e
  34. 손희종, 박홍기, 이수애, 정은영, 정철우, "생물활성탄 공정에서 활성탄 재질에 따른 부착미생물 군집특성," 대한환경공학회지, 27(12), 1311-1320(2005).
  35. 손동민, 손희종, 이화자, 강임석, "생물활성탄(BAC) 공정을 이용한 이취미물질(geosmin, 2-MIB)의 생분해 특성평가," 상하수도학회지, 23(2), 189-198(2009).
  36. 고재현, 손희종, 김영진, 배석문, 유평종, 이태호, "생물할성탄 공정을 이용한 오존처리 부산물인 aldehyde류의 생분해 특성평가," 대한환경공학회지, 31(11), 989-996(2009).
  37. 손희종, 노재순, 김상구, 배석문, 강임석, "활성탄 공정에서의 염소 소독부산물 제거특성," 대한환경공학회지, 27(7), 762-770(2005).
  38. 서인숙, 손희종, 최영익, 안욱성, 박청길, "활성탄과 생물여과 공정에서의 유기질소계 염소 소독부산물 제거 특성," 대한환경공학회지, 29(2), 184-191(2007).
  39. 손희종, 유수전, 유평종, 정철우, "BAC 공정에서 EBCT와 수온에 따른 HAA 제거 특성," 대한환경공학회지, 30(12), 1255-1261(2008).
  40. Berset, J. D., Kupper, T., Etter, R. and Tarradellas, J., "Considerations about the enantioselective transformation of polycyclic musks in wastewater, treated wastewater and sewage sludge and analysis of their fate in a sequencing batch reactor plant," Chemosphere, 57(8), 987-996(2004). https://doi.org/10.1016/j.chemosphere.2004.07.020
  41. Artola-Garicano, E., Borkent, I., Damen, K., Jager, T. and Vaes, W. H. J., "Sorption kinetics and microbial biodegradation activity of hydrophobic chemicals in sewage sludge: model and measurements based on free concentrations," Environ. Sci. Technol., 37(1), 116-122(2003). https://doi.org/10.1021/es020115y

Cited by

  1. Biodegradation of Synthetic Fragrances in Biological Activated Carbon (BAC) Process : Biodegradation Kinetic vol.36, pp.12, 2014, https://doi.org/10.4491/KSEE.2014.36.12.858