• Title/Summary/Keyword: Biological Synthesis

Search Result 1,242, Processing Time 0.021 seconds

Molecular biological approaches to study the function and regulation of citrate synthase genes in saccharomyces cerevisiae

  • Kim, Kwang-Soo;Rosankranz, Mark;Guarente, Leonard
    • The Microorganisms and Industry
    • /
    • v.12 no.2
    • /
    • pp.30-35
    • /
    • 1986
  • Almost all of the aerobic organisms contain citric acid cycle (or, tricarboxylic acid cycle). This cycle is involved both in energy metabolism and biosynthetic reactions; generation of NADH which derives the synthesis of chemical energy, ATP, and provision of intermediates needed for the biosynthesis. Because of its importance in the cellular metabolism, the regulation of the TCA cycle and its component enzymes has been extensively studied by many biologists (7,28). Citrate synthase is resposible for the initial step of the cycle and has been recognized as the rate limiting step (14,121,26). Understanding of the mechanism of the expression of citrate synthase should be a key step for the elucidation of the regulation of the TCA cycle in the cell metabolism.

  • PDF

Synthesis and Biological Evaluation of Furo[2,3-d]pyrimidines as Akt1 Kinase Inhibitors

  • Kim, Se-Young;Kim, Dong-Jin;Yang, Beom-Seok;Yoo, Kyung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.7
    • /
    • pp.1114-1118
    • /
    • 2007
  • Based on the hit compound 4 derived from focused library, a series of furo[2,3-d]pyrimidines were designed, synthesized and evaluated for the inhibitory activity against Akt1 kinase. And their structure-activity relationships were investigated. Of these compounds, 3a having 2-thienyl and methyl groups at R1 and R2 showed the most potent activity with an IC50 value of 24 μ M. Introduction of the thienyl groups at C-5 and C- 6 positions significantly improved potency compared to furyl and phenyl groups.

Synthesis of Anticoagulant 3-(N-Aryalmino)-1,4-Naphthoquinones(III) (항응고성의 3-(N-Arylamino)-1,4-Naphthoquinone 유도체 합성(III))

  • Ryu, Chung-Kyu
    • YAKHAK HOEJI
    • /
    • v.34 no.6
    • /
    • pp.422-428
    • /
    • 1990
  • 2,3-Dibromo-1,4-naphthoquinone was reacted with p-aminobenzoic acid, 2-aminopyridine, 2-amino-4-metylpyridine, m-nitroaniline, sulfathiazol, p-chloroaniline, phenetidine and 2-bromo-3-(N-arylamino)-1,4-naphthoquinones($1{\sim}8$). 2,3-Epoxy-2,3-dihydro-1,4-naphthoquinone was also reacted with p-amonobenzoic acid, p-toluidine, p-chloroaniline, m-chloroaniline, m-nitroaniline, p-phenetidine, N,N-dimethyl-1,4-pheylenediamine as a ring opening and dehydogenation to form 2-hydroxy-3-(N-arylamino)-naphthoquinones ($9{\sim}16$) in good yield. These new compounds($1{\sim}16$) are expected to have a biological activities such as anticoagulant and cytotoxic.

  • PDF

반응표면 분석법을 이용한 광학활성 styrene oxide의 생산조건 최적화

  • Lee, Eun-Yeol;Yun, Seong-Jun;Bae, Hyeon-Cheol;Gang, Jin-Hui
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.593-596
    • /
    • 2000
  • Chiral epoxides are useful chiral synthons in organic synthesis and various biological methods have been investigated for the production of chiral epoxides. In this work, enantioselective resolution of racemic styrene oxide was investigated using an isolated Aspergillus niger sp. for the production of optically pure (S) -styrene oxide. The enantioselectivity and initial hydrolysis rates of racemic substrate were highly dependent on the pH, temperature, and the volume ratio of cosolvent. The experimental sets of pH, temperature, and the volume ratio of cosolvent were designed using central composite experimental design, and the reaction conditions were optimized using response surface analysis. The optimal conditions of pH, temperature, and the volume ration of cosolvent were determined to be 7.78, $28.32^{\circ}C$, and 2.4 %(v/v), respectively, and optically pure (S)-styrene oxide (> 99% ee) could be obtained with the 35 % yield by microbial enantioselective hydrolysis reaction.

  • PDF

Asymmetric Total Synthesis of the Glycosidase Inhibitor, 1,4-dideoxy-l,4-imino-D-arabinitol(DAB1)

  • Kim, In-Su;Hoon, Jung-Young
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.115-115
    • /
    • 2003
  • Naturally occurring sugar mimics with a nitrogen in the ring are classified into five structural classes: polyhydroxylated pyrrolidines, piperidines, indolizidines. pyrrolizidine, and nortropanes. Glycosidase are involved in a wide range of important biological processes, such as intestinal digestion, post-translational processing of glycoproteins and the lysosomal catabolism of glycoconjugate. The realization that alkaloidal sugar mimics might have enormous therapeutic potential in many diseases such as viral infection, cancer and diabetes has led to increasing interest and demand for these compounds. Most of these effects can be shown to result from the direct or indrect inhibition of glycosidases.

  • PDF

Synthesis of Benzoxazole and Bezothiazole-linked TZD Analogs as PPARν Specific Ligands

  • Kim, Hae-Sung;Park, So-Yeon;Raok Jeon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.117-117
    • /
    • 2003
  • PPARs (peroxisome proliferator activated receptors) are member of nuclear hormone receptors superfamily. Activations of PPARs upon binding with ligands modulate glucose metabolite, differentiation of adipocyte, inflammation response, and so on. Thiazolidinedione analog is one of potential antidiabetic drug that binds and activates PPARν selectively and enhances insulin sensitivity. In an effort to develop novel and effective antidiabetic thiazolidindione analogs, syntheses of benzoxazole and benzothiazole-linked thiazolidinedione analogs were performed via coupling reaction of benzoxazolylalkylaminoethanol with hydroxybenzylthiazolidinedione to develop novel and effective antidiabetic thiazolidindiones. All compounds were evaluated their biological potency by PPARν transactivation assay and revealed the similar potency with Troglitazone. However, lengthening of N-alkyl substituent did not seem to be beneficial for the activity.

  • PDF

Role of MicroRNAs in the Warburg Effect and Mitochondrial Metabolism in Cancer

  • Jin, Li-Hui;Wei, Chen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7015-7019
    • /
    • 2014
  • Metabolism lies at the heart of cell biology. The metabolism of cancer cells is significantly different from that of their normal counterparts during tumorigenesis and progression. Elevated glucose metabolism is one of the hallmarks of cancer cells, even under aerobic conditions. The Warburg effect not only allows cancer cells to meet their high energy demands and supply biological materials for anabolic processes including nucleotide and lipid synthesis, but it also minimizes reactive oxygen species production in mitochondria, thereby providing a growth advantage for tumors. Indeed, the mitochondria also play a more essential role in tumor development. As information about the numorous microRNAs has emerged, the importance of metabolic phenotypes mediated by microRNAs in cancer is being increasingly emphasized. However, the consequences of dysregulation of Warburg effect and mitochondrial metabolism modulated by microRNAs in tumor initiation and progression are still largely unclear.

Reactions with Acetoacetanilide : Synthesis and antibacterial activity of some new pyran, pyrano [2, 3-clpyrazole and pyrano [2, 3,-c]-pyridine deerivatives

  • Y, Riad-Bahia;O, Abdelhamid-Abdou;Khalifa, Fathy-A;E, Saleh-Youssry
    • Archives of Pharmacal Research
    • /
    • v.12 no.3
    • /
    • pp.201-206
    • /
    • 1989
  • The reaction of acetoacetanilide (1) with the $\alpha$-cyanocinnamonitrile derivatives 2 yielded the Michael adducts 4 which could be converted into the pyrano [2, 3, -c] pyrazole derivatives 5 via their reaction with hydrazine hydrate. Cyclisation of 4 afforded the derivatives 10. The pyranopyrazoles 9 reacted with different activated nitrile derivatives (3a-c) to give the pyrano [2, 3-c] pyridine derivatives 13. 16 and 19 respectively. The biological activity of the synthesised heterocyclic derivatives was investigated and discussed.

  • PDF

Synthesis and Biological Activities of 8-Arylflavones

  • Dao, Tran-Thanh;Kim, Soo-Bae;Sin, Kwan-Seong;Kim, Sang-Hee;Kim, Hyun-Pyo;Park, Hae-Il
    • Archives of Pharmacal Research
    • /
    • v.27 no.3
    • /
    • pp.278-282
    • /
    • 2004
  • A number of 8-arylflavones have been synthesized as congeners of wogonin and evaluated for their inhibitory activities of $PGE_2$ production. 8-Arylflavones were obtained from commercially available chrysin via two different synthetic pathways. Most 8-arylflavones exhibited much reduced inhibitory activities against COX-2 catalyzed $PGE_2$ production compared to that of wogonin. Functional group replacement at the 8-position of wogonin from methoxy to aryl group caused loss of inhibitory activity. Our present results imply that the functional group at the 8-position of flavones seems to play very important roles for bioactivity.