• Title/Summary/Keyword: Biological Synthesis

Search Result 1,242, Processing Time 0.032 seconds

Design and Synthesis of p-hydroxybenzohydrazide Derivatives for their Antimycobacterial Activity

  • Bhole, Ritesh.P.;Borkar, Deepak.D.;Bhusari, Kishore.P.;Patil, Prashant.A.
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.2
    • /
    • pp.236-245
    • /
    • 2012
  • The main mycobacterial infection in human is tuberculosis caused by Mycobacterium tuberculosis. Tuberculosis is the leading infectious cause of death in the world. Therefore there is continuing and compelling need for new and improved treatment for tuberculosis. The entire logic towards design of new compounds containing 4-hydroxy-N'-(1,3-thiazoldin- 2-yldene)benzohydrazide moiety is basically for superior antimycobacterial activity. The recent advances in QSAR and computer science have provided a systematic approach to design a structure of any compound and further, the biological activity of the compound can be predicted before synthesis. The 3D-QSAR studies for the set of 4-hydroxy-N'-(1,3-thiazoldin- 2-yldene)benzohydrazide and their derivatives were carried out by using V-life MDS (3.50). The various statistical methods such as Multiple Linear Regression (MLR), Partial Least Square Regression (PLSR), Principle Component Regression(PCR) and K nearest neighbour (kNN) were used. The kNN showed good results having cross validated $r^2$ 0.9319, $r^2$ for external test set 0.8561 and standard error of estimate 0.2195. The docking studies were carried out by using Schrodinger GLIDE module which resulted in good docking score in comparison with the standard isoniazid. The designed compounds were further subjected for synthesis and biological evaluation. Antitubercular evaluation of these compounds showed that (4.a), (4.d) and (4.g) found as potent inhibitor of H37RV.

The Effects of Various Alkali Cations on the Crystallization of ZSM-5 at Atmospheric Pressure and Low Temperature (저온상압하에서의 ZSM-5 결정화 반응에 대한 알칼리 양이온의 영향)

  • Kim, Wha Jung;Lee, Myung Churl
    • Applied Chemistry for Engineering
    • /
    • v.9 no.1
    • /
    • pp.38-43
    • /
    • 1998
  • It was realized that the nucleation rate in the synthesis of M-ZSM-5 using various alkali cations such as $Li^+$, $Na^+$, $K^+$ and $Cs^+$ at low temperature and atmospheric pressure was decreased in the order of $Na^+>K^+>Li^+>Cs^+$. Unlike conventional synthesis method at high temperature and pressure, the results showed that at low temperature and atmospheric pressure, the higher the nucleation rate is, the larger the crystal size of M-ZSM-5 obtained ; that is, the crystal size in the order of $K^+>Na^+>Cs^+>Li^+$. In addition, it also suggests that regardless of alkali cations to be used, the current synthesis method can produce M-ZSM-5 with BET surface area greater than $300m^2/g$ within 52hrs. of reaction time, in particular greater than $400m^2/g$ within 32hrs, for $Na^+$ cation.

  • PDF

Anti-wrinkle Activities Verification of Buplerum falcatum Extracts on CCD-986sk (CCD-986sk세포내 시호 추출물의 항주름 활성 검증)

  • Kim, Dong-Hee;Park, Tae-Soon;Son, Jun-Ho
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.2
    • /
    • pp.183-187
    • /
    • 2015
  • The electron donating ability, elastase inhibitory, procollagen synthesis and Matrix metalloprotease-1 (MMP-1) activities were measured in order to verify the anti-wrinkle properties of extracts from Buplerum falcatum as a functional ingredient for cosmetic products. Electron donating ability and elastase inhibition activities were 80 and 52% at a dose of $1,000{\mu}g/mL$ of B. falcatum 70% ethanol extract. Pro-collagen synthesis was increased with the increase concentration of B. falcatum extract on CCD-986sk in addition to decrease the amount of protein of MMP-1. The results suggested that B. falcatum extract can be used to reduced electron donating ability, elastase, pro-collagen synthesis and MMP-1 activity and is a potential candidate for cosmedical materials.

Whitening Activities of the Agrimonia pilosa L. Extracts (선학초 추출물의 미백활성)

  • Kim, Dong-Hee;An, Bong-Jeun;Lee, Jin-Young
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.4
    • /
    • pp.284-289
    • /
    • 2011
  • The extracts of Agrimonia pilosa L. were investigated for the inhibitory effect on the melanin synthesis in B16/F10 mouse melanoma cells as a functional ingredient for cosmetic products. Tyrosinase inhibition activities were 42% in A. pilosa L. 70% ethanol extract at $500{\mu}g/mL$. The protein and mRNA expression of tyrosinase, which are all skin-whitening related factors, showed that A. pilosa L. water and A. pilosa L. 70% ethanol extracts inhibited the protein bio-synthesis in B16F10 melanoma cell. Results indicate that the A. pilosa L. extracts tested in the present study have skin whitening activity and can be used as a functional ingredient for cosmetic compositions.

Biological Synthesis of Au Core-Ag Shell Bimetallic Nanoparticles Using Magnolia kobus Leaf Extract (목련잎 추출액을 이용한 Au Core-Ag Shell 합금 나노입자의 생물학적 합성)

  • Song, Jae Yong;Kim, Beom Soo
    • Korean Chemical Engineering Research
    • /
    • v.48 no.1
    • /
    • pp.98-102
    • /
    • 2010
  • Magnolia kobus leaf extract was used for the synthesis of bimetallic Au core-Ag shell nanoparticles. Gold seeds and silver shells were formed by first treating aqueous solution of $HAuCl_4$ and then $AgNO_3$ with the plant leaf extract as reducing agent. UV-visible spectroscopy was monitored as a function of reaction time to follow the formation of bimetallic nanoparticles. The synthesized bimetallic nanoparticles were characterized with transmission electron microscopy(TEM), energy dispersive X-ray spectroscopy(EDS), and X-ray photoelectron spectroscopy(XPS). TEM images showed that the bimetallic nanoparticles are a mixture of plate(triangles, pentagons, and hexagons) and spherical structures. The atomic Ag contents of the bimetallic Au/Ag nanoparticles determined from EDS and XPS analysis were 34 and 65 wt%, respectively, suggesting the formation of bimetallic Au core-Ag shell nanostructure. This core-shell type nanostructure is expected to have potential for application in surface enhanced Raman spectroscopy and in the sensitive detection of biomolecules.

Microalga Scenedesmus sp.: A Potential Low-Cost Green Machine for Silver Nanoparticle Synthesis

  • Jena, Jayashree;Pradhan, Nilotpala;Nayak, Rati Ranjan;Dash, Bishnu P.;Sukla, Lala Behari;Panda, Prasanna K.;Mishra, Barada K.
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.4
    • /
    • pp.522-533
    • /
    • 2014
  • Bionanotechnology has revolutionized nanomaterial synthesis by providing a green synthetic platform using biological systems. Among such biological systems, microalgae have tremendous potential to take up metal ions and produce nanoparticles by a detoxification process. The present study explores the intracellular and extracellular biogenic syntheses of silver nanoparticles (SNPs) using the unicellular green microalga Scenedesmus sp. Biosynthesized SNPs were characterized by AAS, UV-Vis spectroscopy, TEM, XRD, FTIR, DLS, and TGA studies and finally checked for antibacterial activity. Intracellular nanoparticle biosynthesis was initiated by a high rate of $Ag^+$ ion accumulation in the microalgal biomass and subsequent formation of spherical crystalline SNPs (average size, 15-20 nm) due to the biochemical reduction of $Ag^+$ ions. The synthesized nanoparticles were intracellular, as confirmed by the UV-Vis spectra of the outside medium. Furthermore, extracellular synthesis using boiled extract showed the formation of well scattered, highly stable, spherical SNPs with an average size of 5-10 nm. The size and morphology of the nanoparticles were confirmed by TEM. The crystalline nature of the SNPs was evident from the diffraction peaks of XRD and bright circular ring pattern of SAED. FTIR and UV-Vis spectra showed that biomolecules, proteins and peptides, are mainly responsible for the formation and stabilization of SNPs. Furthermore, the synthesized nanoparticles exhibited high antimicrobial activity against pathogenic gram-negative and gram-positive bacteria. Use of such a microalgal system provides a simple, cost-effective alternative template for the biosynthesis of nanomaterials in a large-scale system that could be of great use in biomedical applications.

Production of protein hydrolysate and plastein from alaska-pollack (명태단백 가수분해물 제조 및 plastein의 합성)

  • Suh, Hyung-Joo;Lee, Ho;Cho, Hong-Yon;Yang, Han-Chul
    • Applied Biological Chemistry
    • /
    • v.35 no.5
    • /
    • pp.339-345
    • /
    • 1992
  • In order to enhance the processing quality and utility of alaska-pollack meat, the optimum conditions for the preparation of pronase hydrolysate and the synthesis of plastein were investigated. The optimum temperature and pH for the hydrolysis of alaska-pollack by pronase were $40^{\circ}C$ and pH 7.0. The reaction time and enzyme concentration were 4 hr and 1,000 units per g of substrate. Under the above optimum conditions alaska-pollack was hydrolyzed by pronase yielding a hydrolytic degree of about 89%. Pronase hydrolysate was employed as substrate for plastein synthesis. The 30% pronase hydrolysates were adjusted to pH 7 for fruit-bromelain and pH 5 for stem-bromelain, and then plastein were synthesized by 1% bromelain at $40^{\circ}C$ for 24 hr. The plasteins synthesized by fruit- and stem-bromelain were consisted of peptides having average peptide length of 22.6 and 20.8 under the optimum synthetic conditions. The plastein synthesis reaction reduced considerably the bitterness of pronase hydrolysate.

  • PDF

Anti-wrinkle efficacy of isoquercitrin isolated from Nymphoides indica (어리연꽃에서 분리된 Isoquercitrin의 주름개선 효능 연구)

  • Yu, Jae-Myo;Kang, Yun-Hwan;Kim, Dong-Hee;Kim, You-Ah;Kim, A-Hyun;Park, Byoung-Jun;Park, Tae-Soon
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.4
    • /
    • pp.321-325
    • /
    • 2018
  • In this study, we evaluated the possibility of wrinkle-reducing functional cosmetic material of isoquercitrin (IQC) isolated from Nymphoides indica (NP) by measuring the efficacy of ROS inhibition, procollagen synthesis induction, and matrix metalloproteinase (MMP)-1 inhibition. As a result, ROS tended to be inhibited in a concentration dependent manner, and the procollagen protein synthesis rate was increased by 70% ($5{\mu}g/mL$) and the MMP-1 protein was decreased by 41% ($5{\mu}g/mL$) compared with the control. This was suggested the ability of IQC to induce the procollagen synthesis and to reduce the ROS and MMP-1 production. Therefore, it is considered that IQC isolated from NP has enough value to be a functional cosmetic material.

Schisandrae Fructus: A Potential Candidate Functional Food Against Muscle Atrophy and Osteoarthritis Prevention

  • Lee, Seung Young;Jin, Hyun Mi;Ryu, Byung-Gon;Jung, Ji Young;Kang, Hye Kyeong;Choi, Hee Won;Choi, Kyung Min;Jeong, Jin Woo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.04a
    • /
    • pp.8-8
    • /
    • 2018
  • Muscle atrophy, known as a sarcopenia, is defined as a loss of muscle mass resulting from a reduction in muscle fiber area or density due to a decrease in muscle protein synthesis and an increase in protein breakdown. Many conditions are associated with muscle atrophy, such as aging, denervation, disuse, starvation, severe injury and inflammation, prolonged bed rest, glucocorticoid treatment, sepsis, cancer, and other cachectic diseases. On the other hand, osteoarthritis (OA) is the most common form of joint disease and is wide spread in the elderly population and is characterized by erosion of articular cartilage, osteophyte formation, and subchondral bone sclerosis. The cytokine network plays an important role in the development and progression of OA with the inflammatory cytokine. Schisandrae Fructus (SF) derived from the ripe fruit of Schisandra chinensis (Turcz.) Baill. (Magnoliaceae) has been extensively used in traditional herbal medicines in Asia. It was originally used as a tonic and has been traditionally used for the treatment of many uncomfortable symptoms, such as cough, dyspnea, dysentery, insomnia, and amnesia for a long time. Previous reports have shown that SF and its related compounds possess various biological activities such as antioxidant, anti-inflammatory, anticancer, anti-microbial, antiseptic, anti-aging, hepatoprotective and immunostimulating effects. However, the therapeutic effects of SF on muscle atrophy and OA has not yet been evaluated. In the present study, we aimed to determine whether extracts of SF, the dried fruit of S. chinensis, mitigates the development of muscle atrophy and OA.

  • PDF

Activation of Signaling Pathways for Protein Synthesis by Korean Mistletoe (Viscum album coloratum) Extract in a Mouse Model of Muscle Atrophy (근위축 마우스 모델에서 한국산 겨우살이 추출물에 의한 단백질 합성 신호전달 경로의 활성화)

  • Jeong, Juseong;Park, Choon-Ho;Kim, Inbo;Kim, Jong-Bae
    • The Korean Journal of Food And Nutrition
    • /
    • v.30 no.2
    • /
    • pp.371-377
    • /
    • 2017
  • Muscle atrophy is characterized by a decrease in the mass of the muscle. With an increase in life expectancy and chronic illnesses, the incidence of muscle atrophy is increasing and the quality of life of patients is decreasing. Thus, reducing muscle atrophy is of high clinical and socio-economic importance. Mistletoe is a semi-parasitic plant that has been used as a traditional medicine in many countries to treat various human illnesses. It has been reported that Korean mistletoe extract (KME) has diverse biological functions including anti-tumor, anti-oxidant, anti-diabetic, anti-obesity properties, and extension of lifespan. Especially, we have recently reported that KME improves exercise endurance in mice, indicating its beneficial roles in enhancing the capacity of skeletal muscle. In this study, we investigated whether KME could activate the signaling pathway related to protein synthesis in a mouse model of muscle atrophy. Interestingly, KME efficiently activated the Akt/mTOR pathway, and Akt and mTOR are important signaling hub molecules for the acceleration of protein synthesis in muscle cells. In addition, KME also increased the activity of S6 kinase which is involved in the regulation of muscle cell size. Moreover, the ERK activity, required for transcription of ribosomal RNA for protein synthesis, was also enhanced in KME-treated mouse muscle. These data support the idea that KME increases muscle mass via increased protein synthesis. Our findings also suggest that Korean mistletoe might be a promising candidate for the development of functional foods that are beneficial for preventing muscle atrophy.