Browse > Article
http://dx.doi.org/10.4014/jmb.1306.06014

Microalga Scenedesmus sp.: A Potential Low-Cost Green Machine for Silver Nanoparticle Synthesis  

Jena, Jayashree (CSIR - Institute of Minerals and Materials Technology)
Pradhan, Nilotpala (CSIR - Institute of Minerals and Materials Technology)
Nayak, Rati Ranjan (CSIR - Indian Institute of Chemical Technology)
Dash, Bishnu P. (Fakir Mohan University)
Sukla, Lala Behari (CSIR - Institute of Minerals and Materials Technology)
Panda, Prasanna K. (CSIR - Institute of Minerals and Materials Technology)
Mishra, Barada K. (CSIR - Institute of Minerals and Materials Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.24, no.4, 2014 , pp. 522-533 More about this Journal
Abstract
Bionanotechnology has revolutionized nanomaterial synthesis by providing a green synthetic platform using biological systems. Among such biological systems, microalgae have tremendous potential to take up metal ions and produce nanoparticles by a detoxification process. The present study explores the intracellular and extracellular biogenic syntheses of silver nanoparticles (SNPs) using the unicellular green microalga Scenedesmus sp. Biosynthesized SNPs were characterized by AAS, UV-Vis spectroscopy, TEM, XRD, FTIR, DLS, and TGA studies and finally checked for antibacterial activity. Intracellular nanoparticle biosynthesis was initiated by a high rate of $Ag^+$ ion accumulation in the microalgal biomass and subsequent formation of spherical crystalline SNPs (average size, 15-20 nm) due to the biochemical reduction of $Ag^+$ ions. The synthesized nanoparticles were intracellular, as confirmed by the UV-Vis spectra of the outside medium. Furthermore, extracellular synthesis using boiled extract showed the formation of well scattered, highly stable, spherical SNPs with an average size of 5-10 nm. The size and morphology of the nanoparticles were confirmed by TEM. The crystalline nature of the SNPs was evident from the diffraction peaks of XRD and bright circular ring pattern of SAED. FTIR and UV-Vis spectra showed that biomolecules, proteins and peptides, are mainly responsible for the formation and stabilization of SNPs. Furthermore, the synthesized nanoparticles exhibited high antimicrobial activity against pathogenic gram-negative and gram-positive bacteria. Use of such a microalgal system provides a simple, cost-effective alternative template for the biosynthesis of nanomaterials in a large-scale system that could be of great use in biomedical applications.
Keywords
Scenedesmus sp.; silver nanoparticle; biosynthesis; antimicrobial activity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yin Y, Hong-Ying H, Xin L, Yin-Hu W, Xue Z, Sheng-Lan J. 2012. Accumulation characteristics of soluble algal products (SAP) by a freshwater microalga Scenedesmus sp. LX1 during batch cultivation for biofuel production. Bioresour. Technol. 110: 184-189.   DOI   ScienceOn
2 Singhal G, Bhavesh R, Kasariya K, Sharma AR, Singh RP. 2011. Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. J. Nanopart. Res. 13: 2981-2988.   DOI   ScienceOn
3 Toledo-Cervantes A, Morales M, Novelo E, Revah S. 2013. Carbon dioxide fixation and lipid storage by Scenedesmus obtusiusculus. Bioresour. Technol. 130: 652-658.   DOI   ScienceOn
4 Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH. 2007. Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater. Lett. 61: 1413-1418.   DOI   ScienceOn
5 Wang J, Chen C. 2009. Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 27: 195-226.   DOI   ScienceOn
6 Wiley B, Sun Y, Xia Y. 2007. Synthesis of silver nanostructures with controlled shapes and properties. Acc. Chem. Res. 40: 1067-1076.   DOI   ScienceOn
7 Xie J, Lee JY, Wang DIC, Ting YP. 2007. Silver nanoplates: from biological to biomimetic synthesis. ACS Nano 1: 429-439.   DOI   ScienceOn
8 Xie J, Lee JY, Wang DIC, Ting YP. 2007. Identification of active biomolecules in the high-yield synthesis of singlecrystalline gold nanoplates in algal solutions. Small 3: 668-672.
9 Yang X, Li Q, Wang H, Huang J, Lin L, Wang W, et al. 2010. Green synthesis of palladium nanoparticles using broth of Cinnamomum camphora leaf. J. Nanopart. Res. 12: 1589-1598.   DOI
10 Peng W, Wu Q, Tu P. 2001. Pyrolytic characteristics of heterotrophic Chlorella protothecoides for renewable biofuel production. J. Appl. Phycol. 13: 5-12.   DOI   ScienceOn
11 Perales-Vela HV, Pena-Castro JM, Canizares-Villanueva RO. 2006. Heavy metal detoxification in eukaryotic microalgae. Chemosphere 64: 1-10.   DOI   ScienceOn
12 Pradhan N, Nayak RR, Pradhan AK, Sukla LB, Mishra BK. 2011. In situ synthesis of entrapped silver nanoparticles by a fungus, Penicillium purpurogenum. Nanosci. Nanotechnol. Lett. 3: 1-7.   DOI
13 Pugazhenthiran N, Anandan S, Kathiravan G, Udaya Prakash NK, Crawford S, Ashok Kumar M. 2009. Microbial synthesis of silver nanoparticles by Bacillus sp. J. Nanopart. Res. 11: 1811-1815.   DOI
14 Otari SV, Patil RM, Nadaf NH, Ghosh SJ, Pawa SH. 2012. Green biosynthesis of silver nanoparticles from an actinobacteria Rhodococcus sp. Mater. Lett. 72: 92-94.   DOI   ScienceOn
15 Parashar UK, Saxena PS, Srivastav A. 2009. Bioinspired synthesis of silver nanoparticles. Dig. J. Nanomater. Bios. 4: 159-166.
16 Parial D, Patra HK, Roychoudhury P, Dasgupta AK, Pal R. 2012. Gold nanorod production by cyanobacteria - a green chemistry approach. J. Appl. Phycol. 24: 55-60.   DOI
17 Kalishwaralal K, Deepak V, Ramkumarpandian S, Nellaiah H, Sangiliyandi G. 2008. Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater. Lett. 62: 4411-4413.   DOI   ScienceOn
18 Shankar SS, Rai A, Ahmad A, Sastry M. 2004. Rapid synthesis of Au, Ag, and bimetallic Au core Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci. 275: 496-502.   DOI   ScienceOn
19 Sharma VK, Yingard RA, Lin Y. 2009. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci. 145: 83-96.   DOI   ScienceOn
20 Kalimuthu K, Suresh Babu R, Venkataraman D, Bilal M, Gurunathan S. 2008. Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf. B Biointerfaces 65: 150-153.   DOI   ScienceOn
21 Kim MK, Jeune KH. 2009. Use of FT-IR to identify enhanced biomass production and biochemical pool shifts in the marine microalgae, Chlorella ovalis, cultured in media composed of different ratios of deep seawater and fermented animal wastewater. J. Microbiol. Biotechnol. 19: 1206-1212.
22 Klaus T, Joerger R, Olsson E, Granqvist CG. 1999. Silverbased crystalline nanoparticles, microbially fabricated. Proc. Natl. Acad. Sci. USA 96: 13611-13614.   DOI   ScienceOn
23 Li S, Shen Y, Xie A, Yu X, Qiu L, Zhang L, Zhang Q. 2007. Green synthesis of silver nanoparticle using Capsicum annuum L. extract. Green Chem. 9: 852-858.   DOI   ScienceOn
24 Luangpipat T, Beattie IR, Chisti Y, Haverkamp RG. 2011. Gold nanoparticles produced in a microalga. J. Nanopart. Res. 13: 6439-6445.   DOI
25 Mata TM, Martins AA, Caetano SN. 2010. Microalgae for biodiesel production and other applications: a review. Renew. Sustain. Ener. Rev. 14: 217-232.   DOI   ScienceOn
26 Mohseniazar M, Barin M, Zarredar H, Alizadeh S, Shanehbandi D. 2011. Potential of microalgae and lactobacilli in biosynthesis of silver nanoparticles. Bioimpacts 1: 149-152.
27 Chakraborty N, Banerjee A, Lahiri S, Panda A, Ghosh AN, Pal R. 2009. Biorecovery of gold using Cyanobacteria and an eukaryotic alga with special reference to nanogold formation - a novel phenomenon. J. Appl. Phycol. 21: 145-152.   DOI
28 Nayak RR, Pradhan N, Behera D, Pradhan KM, Mishra S, Sukla LB, Mishra BK. 2011. Green synthesis of silver nanoparticle by Penicillium purpurogenum NPMF: the process and optimization. J. Nanopart. Res. 13: 3129-3137.   DOI
29 Nithya R, Ragunathan R. 2009. Synthesis of silver nanoparticle using Pleurotus sajor caju and its antimicrobial study. Digest. J. Nanomat. Biostr. 4: 623-629.
30 Brayner R, Barberousse H, Hernadi M, Djedjat C, Yepremian C, Coradin T. 2007. Cyanobacteria as bioreactors for the synthesis of Au, Ag, Pd, and Pt nanoparticles via an enzyme-mediated route. J. Nanosci. Nanotechnol. 7: 2696-2708.   DOI   ScienceOn
31 Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M. 2009. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomed. Nanotech. Biol. Med. 5: 382-386.   DOI   ScienceOn
32 Ganesh Babu MM, Gunasekaran P. 2013. Extracellular synthesis of crystalline silver nanoparticles and its characterization. Mater. Lett. 90: 162-164.   DOI   ScienceOn
33 Gouveia L, Oliveira AC. 2009. Microalgae as a raw material for biofuels production. J. Ind. Microbiol. Biotechnol. 36: 269-274.   DOI   ScienceOn
34 Jain N, Bhargava A, Majumdar S, Tarafdarb JC, Panwar J. 2011. Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale 3: 635-641.   DOI   ScienceOn
35 Jegadeeswaran P, Shivaraj R, Venckatesha R. 2012. Green synthesis of silver nanoparticles from extract of Padina tetrastromatica leaf. Dig. J. Nanomater. Bios. 7: 991-998.
36 Jena J, Nayak M, Panda HS, Pradhan N, Sarika C, Panda PK, et al. 2012. Microalgae of Odisha Coast as a potential source for biodiesel production. World Environ. 2: 12-17.   DOI
37 Barwal I, Ranjan P, Kateriya S, Yadav SC. 2011. Cellular oxido-reductive proteins of Chlamydomonas reinhardtii control the biosynthesis of silver nanoparticles. J. Nanobiotechnol. 9:56.   DOI
38 Jian LW, Chen C. 2009. Biosorbents for heavy metal removal and their future. Biotechnol. Adv. 27: 195-226.   DOI   ScienceOn
39 Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M. 2003. Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14: 824-828.   DOI   ScienceOn
40 Ahmad AL, Yasin Mat NH, Derek CJC, Lim JK. 2011. Microalgae as a sustainable energy source for biodiesel production: a review. Renew. Sustain. Ener. Rev. 15: 584-593.   DOI   ScienceOn
41 Bosch A, Serra D, Prieto C, Schmitt J, Naumann D, Yantorno O. 2006. Characterization of Bordetella pertussis growing as biofilm by chemical analysis and FT-IR spectroscopy. Appl. Microbiol. 71: 736-747.
42 Chakraborty N, Pal R, Ramaswami A, Nayak D, Lahiri S. 2006. Diatom: a potential bio-accumulator of gold. J. Radioanal. Nuclear Chem. 270: 645-649.   DOI
43 Rosei F. 2004. Nanostructured surfaces: challenges and frontiers in nanotechnology. J. Phys. Condens. Matter 16: S1373-S1436.   DOI   ScienceOn