• Title/Summary/Keyword: Biological Engineering

Search Result 9,444, Processing Time 0.036 seconds

Web Services Based Biological Data Analysis Tool

  • Kim, Min Kyung;Choi, Yo Hahn;Yoo, Seong Joon;Park, Hyun Seok
    • Genomics & Informatics
    • /
    • v.2 no.3
    • /
    • pp.142-146
    • /
    • 2004
  • Biological data and analysis tools are accumulated in distributed databases and web servers. For this reason, biologists who want to find information from the web should be aware of the various kinds of resources where it is located and how it is retrieved. Integrating the data from heterogeneous biological resources will enable biologists to discover new knowledge across the specific domain boundaries from sequences to expression, structure, and pathway. And inevitably biological databases contain noisy data. Therefore, consensus among databases will confirm the reliability of its contents. We have developed WeSAT that integrates distributed and heterogeneous biological databases and analysis tools, providing through Web Services protocols. In WeSAT, biologists are retrieved specific entries in SWISS-PROT/EMBL, PDB, and KEGG, which have annotated information about sequence, structure, and pathway. And further analysis is carried by integrated services for example homology search and multiple alignments. WeSAT makes it possible to retrieve real time updated data and analysis from the scattered databases in a single platform through Web Services.

Bioelectrochemical Denitrification Using Permeabilized Ochrobactrum anthropi SY509

  • Choi Kyung-Oh;Song Seung-Hoon;Kim Yang-Hee;Park Doo-Hyun;Yoo Young-Je
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.678-682
    • /
    • 2006
  • To remove nitrate from wastewater, a novel bioelectrochemical denitrification system is introduced. In this proposed system, biological reactions are coupled with reactions on the electrode, whereby the electrons are transferred to the bacterial enzymes via a mediator as an electron carrier. The denitrification reaction was achieved with permeabilized Ochrobactrum anthropi SY509 containing denitrifying enzymes, such as nitrate reductase, nitrite reductase, and nitrous oxide reductase, and methyl viologen was used as the mediator. The electron transfer from the electrode to the enzymes in the bacterial cells was confirmed using cyclic voltammetry. A high removal efficiency of nitrate was achieved when the bioelectrochemical system was used with the permeabilized cells. Furthermore, when the permeabilized cells were immobilized to a graphite felt electrode using a calcium alginate matrix containing graphite powder, a high removal efficiency was achieved (4.38 nmol/min mg cell) that was comparable to the result when using the free permeabilized cells.

Isolation and Functional Analysis of spy1 Responsible for Pristinamycin Yield in Streptomyces pristinaespiralis

  • Jin, Qingchao;Yin, Huali;Hong, Xiaowei;Jin, Zhihua
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.793-799
    • /
    • 2012
  • A gene related to high pristinamycin yield in Streptomyces pristinaespiralis was selected by amplified fragment length polymorphism (AFLP) and its functions were investigated by gene disruption. First, a 561 bp polymorphic sequence was acquired by AFLP from high-yield recombinants compared with the S. pristinaespiralis ancestor ATCC25486, indicating that this approach is an effective means of screening for valuable genes responsible for antibiotic yield. Then, a 2,127 bp open reading frame of a gene designated spy1 that overlaps with the above fragment was identified and its structure and biological functions were investigated. In silico analysis of spy1 encoding a deduced 708-amino-acid-long serine/threonine protein kinase showed that it only contains a catalytic domain in the N-terminal region, which is different from some known homologs. Gene inactivation of chromosomal spy1 indicated that it plays a pleiotropic regulatory function in pristinamycin production, with a positive correlation to pristinamycin I biosynthesis and a negative correlation to pristinamycin II biosynthesis.

Adenoviral Vector Mediates High Expression Levels of Human Lactoferrin in the Milk of Rabbits

  • Han, Zeng-Sheng;Li, Qing-Wang;Zhang, Zhi-Ying;Yu, Yong-Sheng;Xiao, Bo;Wu, Shu-Yun;Jiang, Zhong-Liang;Zhao, Hong-Wei;Zhao, Rui;Li, Jian
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.153-159
    • /
    • 2008
  • The limitations in current technology for generating transgenic animals, such as the time and the expense, hampered its extensive use in recombinant protein production for therapeutic purpose. In this report, we present a simple and less expensive alternative by directly infusing a recombinant adenovirus vector carrying human lactoferrin cDNA into rabbit mammary glands. The milk serum was collected from the infected mammary gland 48 h post-infection and subjected to a 10% SDS-PAGE and Western blotting. An 80-kDa protein was visualized after viral vector infection. With this method, we obtained a high level of expressed human lactoferrin of up to 2.3mg/ml in the milk. Taken together, the method is useful for the transient high-level expression recombinant proteins, and the approach established here is probably one of the most economical and efficient ways for large-scale production of recombinant proteins of biopharmaceutical interest.

A Study of the Effect of Acoustic Noise Attenuator on Auditory Functional MRI (소음 감쇠기를 이용한 청각의 뇌기능 자기공명영상)

  • Kim, S.H.;Kim, I.S.;Lee, J.J.;Park, J.A.;Lee, Y.J.;Yeo, J.R.;Bae, S.J.;Lee, S.H.;Chang, Y.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.9 no.2
    • /
    • pp.134-139
    • /
    • 2005
  • Purpose : To evaluate the usefulness of acoustic noise attenuator on auditory fMRI examination. Materials and methods : The acoustic noise attenuator consists of mask, earmuff and silicon earplug. The soft polyurethane sheet and polyurethane form , which has a good soundproof characteristic were used for mask and earmuff. Auditory fMRI experiments of 500 Hz pure tone stimulation were performed in three different cases; first all of mask, earmuff and earplug, secondly earmuff and earplug only and finally without attenuator in 4 normal hearing volunteers. For data acquisition, BOLD MR imaging technique was employed at a 1.5T MR scanner equipped with high performance gradient system. The raw data were analyzed using a SPM-99 analysis software and the activation maps were obtained. Results : In case of all items of acoustic attenuator used, the results revealed that activation was focused on primary auditory area. When only earmuff and earplug were used, the results showed that the activation spread over primary auditory and secondary associative areas. Last, when no device used, only weak activation was observed on the right auditory cortex. Conclusion : It is expected that the acoustic noise attenuator, which consists of earplugs, earmuffs and mask, is a very useful device in auditory fMRI study.

  • PDF

Verification of a Relationship between Ultraviolet Radiation and Initial Microalgal Cell Density Using a Floating Marine Photobioreactor (부유형 해양 광생물반응기를 이용한 자외선과 초기 미세조류 접종 농도와의 상관관계 규명)

  • Kim, Z-Hun;Park, Hanwool;Jung, Seong-Gyun;Kim, Su-Kwon;Kim, Hee-Yun;Park, Yong Sung;Hong, Han Ma Roo;Lee, Choul-Gyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.7 no.2
    • /
    • pp.52-57
    • /
    • 2015
  • The purpose of this study was to investigate a relationship between ultraviolet radiation and initial cell density (ICD) of microalgae using a floating marine photobioreactor (PBR). To examine the effect of ultraviolet (UV) radiation in sunlight on biomass productivity as a function of ICD, 0.5-L floating PBRs covered with or without UV cut-off film were placed in an outdoor rectangular tank containing 200 L of water. At the lower ICDs, 0.01 and 0.05 g/L, biomass productivities in the PBRs without UV cut-off film decreased by $278{\pm}21%$ and $222{\pm}3%$ compared with those with the film, respectively. In contrast, the presence of UV cut-off film did not have a significant effect on biomass productivities at the higher ICDs, 0.25 and 1.25 g/L. When the differences in biomass productivity made by the UV cut-off film were plotted against the sum of cell projection area per light receiving area of the PBR, the results revealed that the inhibitory effect of UV on biomass productivity can be negligible when the sum of cell projection area is equal to the light receiving area of the PBR. These results show that photoinhibition caused by UV radiation could be eliminated via operating the PBR with a proper ICD.

Improving Microalgal Biomass Productivity and Preventing Biofouling in Floating Marine Photobioreactors via Sulfonation of Selectively Permeable Membranes (부유형 해양 광생물반응기의 선택적 투과막의 술폰화 반응을 통한 Biofouling 억제 및 미세조류 생산성 향상)

  • Kim, Kwangmin;Lee, Yunwoo;Kim, Z-Hun;Park, Hanwool;Jung, Injae;Park, Jaehoon;Lim, Sang-Min;Lee, Choul-Gyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.9 no.1
    • /
    • pp.14-21
    • /
    • 2017
  • The purpose of this study was to inhibit biofouling on a selectively permeable membrane (SPM) and increase biomass productivity in marine photobioreactors (PBRs) for microalgal cultivation by chemical treatment. Surfaces of a SPM, composed of polyethylene terephthalate (PET), was sulfonated to decrease hydrophobicity through attaching negatively charged sulfonic groups. Reaction time of sulfonation was varied from 0 min to 60 min. As the reaction time increased, the water contact angle value of SPM surface was decreased from $75.5^{\circ}$ to $44.5^{\circ}$, indicating decrease of surface hydrophobicity. Furthermore, the water permeability of sulfonated SPM was increased from $5.42mL/m^2/s$ to $10.58mL/m^2/s$, which reflects higher nutrients transfer rates through the membranes, due to decreased hydrophobicity. When cultivating Tetraselmis sp. using 100-mL floating PBRs with sulfonated SPMs, biomass productivity was improved by 34% compared with the control group (non-reacted SPMs). In addition, scanning electron microscopic observation of SPMs used for cultivation clearly revealed lower degree of cell attachment on the sulfonated SPMs. These results suggest that sulfornation of a PET SPM could improve microalgal biomass productivity by increasing nutrients transfer rates and inhibiting biofouling by algal cells.

Comparison of Biomass Productivity of the Microalgae, Tetraselmis sp. KCTC12236BP, in Polyvinyl Chloride Marine Photobioreactor and High Density Polyethylene Marine Photobioreactor (폴리비닐클로라이드 해양광생물반응기와 고밀도 폴리에틸렌 해양광생물반응기에서 미세조류, Tetraselmis sp. KCTC12236BP의 생산성 비교)

  • Jung, Seung-Gyun;Kim, Su-Kwon;Bun, Moon-Sup;Cho, Yonghee;Shin, Dong-Woo;Kim, Z-Hun;Lim, Sang-Min;Lee, Choul-Gyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.8 no.1
    • /
    • pp.18-23
    • /
    • 2016
  • It is important to design photobioreactor by cheap material for economical microalgal biomass production. In this study, two types of marine photobioreactors (MPBR), made by either polyvinyl chloride (MPBR-PVC) or high density poly ethylene (MPBR-HDPE), are used and performance of these were compared. Tetraselmis sp. KCTC 12236BP is a green marine alga that isolated from Ganghwa Island, Korea, and the strain was used for marine cultivations using MPBR-PVC and MPBR-HDPE. The cultivations were performed three times in the spring season of 2012 using MPBR-PVC and of 2013 using MPBR-HDPE in the coastal area of Young Heung Island. As the results, MPBR-PVC shows higher biomass productivities than MPBR-HDPE, due to its high light transmittance. In the cultivations using MPBR-PVC, the average sea water temperature was $11.5^{\circ}C$ during the first experiment and $16.5^{\circ}C$ during the second and third experiments. Average light intensities during three times for experiments were 407.5, 268.1 and $273.0{\mu}{\cdot}E{\cdot}m^{-2}{\cdot}s^{-1}$, respectively. The maximum fresh cell weight and average biomass productivity were $1.2g{\cdot}L^{-1}$ and $0.12g{\cdot}L^{-1}{\cdot}day^{-1}$. These results showed that Tetraselmis sp. KCTC12236BP were adapted well with the environmental conditions from ocean, and grow in the MPBR-PVC and MPBR-HDPE.

Recent Advances in the Chemobiological Upcycling of Polyethylene Terephthalate (PET) into Value-Added Chemicals

  • Joyce Mudondo;Hoe-Suk Lee;Yunhee Jeong;Tae Hee Kim;Seungmi Kim;Bong Hyun Sung;See-Hyoung Park;Kyungmoon Park;Hyun Gil Cha;Young Joo Yeon;Hee Taek Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.1-14
    • /
    • 2023
  • Polyethylene terephthalate (PET) is a plastic material commonly applied to beverage packaging used in everyday life. Owing to PET's versatility and ease of use, its consumption has continuously increased, resulting in considerable waste generation. Several physical and chemical recycling processes have been developed to address this problem. Recently, biological upcycling is being actively studied and has come to be regarded as a powerful technology for overcoming the economic issues associated with conventional recycling methods. For upcycling, PET should be degraded into small molecules, such as terephthalic acid and ethylene glycol, which are utilized as substrates for bioconversion, through various degradation processes, including gasification, pyrolysis, and chemical/biological depolymerization. Furthermore, biological upcycling methods have been applied to biosynthesize value-added chemicals, such as adipic acid, muconic acid, catechol, vanillin, and glycolic acid. In this review, we introduce and discuss various degradation methods that yield substrates for bioconversion and biological upcycling processes to produce value-added biochemicals. These technologies encourage a circular economy, which reduces the amount of waste released into the environment.