• Title/Summary/Keyword: Biological Engineering

Search Result 9,444, Processing Time 0.031 seconds

Synthesis of Microspheric Silicone Polymer Beads by UV Irradiation and Alkoxy Hydrolysis (UV 조사와 Alkoxy 가수분해 법을 이용한 구형 실리콘 마이크로 고분자 비드의 합성)

  • Park, Seung-Wook;Kim, Jung-Joo;Hwang, Eui-Hwan;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.32 no.4
    • /
    • pp.377-384
    • /
    • 2008
  • In this study, the microsphere silicone polymer beads were synthesized by UV irradiation and alkoxy hydrolysis. The coefficient of variation (CV) of microsphere silicone polymer beads were decreased with increasing UV intensity, reaction time. The mean particle diameter, refractive index, and pH value were $4.1{\mu}m$, 1.43 and 7.5, respectively. Also, the true and bulk specific gravity, moisture content were 1.30, and 0.40, below 2%. The mean particle diameter and CV were the lowest at 0.1 wt% hexamethyldisilazane (HMDS) and their roundnesses were $0.95{\sim}0.98{\mu}m$ values. The particle dispersion index of microsphere silicone polymer beads was 4.92 at 450 W, 90 min and the yield was increased to 11.3% at 20 wt% methyltrimethoxysilane (MTMS). The mean particle diameter was decreased with increasing the stirring rate and reaction temperature.

Modeling and Simulation of the Total Artificial Heart with Cardiovascular System (심혈관계를 포함한 인공심장의 모델링 및 컴퓨터 시뮬레이션)

  • Park, J.W.;Park, S.K.;Choi, J.H.;Jo, Y.H.;Choi, J.S.;Ahn, J.M.;Min, B.G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.249-250
    • /
    • 1998
  • In this study, we modeled moving-actuator type Total Artificial Heart (TAH) with cardiovascular system as a form of electric circuit. The bronchial circulation, important for the imbalance between the left cardiac output and the right one, was considered and added to the model. In the model, the relations of hemodynamic variables, just as blood pressures, volumes, or flow rates of each part of body, can be expressed as simultaneous first order ordinary differential equations. To solve the equations by the numerical analysis, Runge-Kutta forth order approximation method was adopted. The simulation software (SimTAH), implemented in C++ as a window-based application program, was developed to display the hemodynamic variables and to receive control inputs from users. SimTAH was evaluated by comparison of the simulation results with the results of mock-circulation tests, in vitro.

  • PDF

Enhanced Synthesis of Active rPA in the Continuous Exchange Cell-free Protein Synthesis [CECF] System utilizing Molecular Chaperones (분자 샤페론을 사용한 연속확산식 무세포단백질 발현 시스템에서의 재조합 Plasminogen Activator의 효율적 발현)

  • Park, Chang-Gil;Kim, Tae-Wan;Choi, Cha-Yong;Kim, Dong-Myung
    • KSBB Journal
    • /
    • v.21 no.2
    • /
    • pp.118-122
    • /
    • 2006
  • In this report, we describe that the use of GroEL/GroES-enriched S30 extract remarkably enhances the solubility and enzymatic activity of cell-free synthesized rPA, which requires the correct formation of 9 disulfide bonds for its biological activity. We found that the stable maintenance of redox potential is necessary, but not sufficient for the optimal expression of active rPA. In a control reaction without using additional molecular chaperones, most of the rPA molecules were aggregated almost instantly after their expression and thus failed to exhibit the enzymatic activity. However, by the use of GroEL/GroES-enriched extract, combined with IAM-treatment, approximately $30{\mu}g/ml$ of active rPA was expressed in the cell-free synthesis reaction. This result not only demonstrates the efficient production of complex proteins, but also shows the control and flexibility offered by the cell-free protein synthesis system.

Temperature-Dependent Effects of Pollutants on Biological Denitrification Process for Treating Cokes Wastewater (코크스폐수의 생물학적 탈질공정에 대한 독성물질의 온도에 따른 영향)

  • Kim, Young Mo;Park, Donghee;Ahn, Chi Kyu;Lee, Min Woo;Park, Jong Moon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1124-1129
    • /
    • 2008
  • Cokes wastewater is one of the most toxic industrial effluents since it contains high concentrations of pollutants, such as phenol, ammonia, thiocyanate and cyanides. Although biological pre-denitrification process has been used to treat this wastewater in Korea, unexpected failure in nitrogen removal occasionally occurs during summer season. In this study, therefore, we examined inhibitory effects of phenol, ammonia, thiocyanate, ferric cyanide and free cyanide on biological denitrification according to temperature variation ($20{\sim}38^{\circ}C$). Batch experiments showed that denitrification rate was faster in summer ($38^{\circ}C$) than other seasons, and removal rates of pollutants increased with increasing temperature. Phenol, ammonia, thiocyanate and ferric cyanide did not inhibit denitrification even at its high concentration (200 mg/L). However free cyanide above 0.5 mg/L seriously inhibited the bilolgical denitrification reaction. Inhibitory effect of these pollutants was reduced with increasing temperature.

Stereocontrolled Dihydroxylation Reactions of Acyclic Allylic Amines (비고리 알릴아민 화합물의 입체선택적 이중알코올화 반응)

  • Jeon, Jongho;Shin, Nara;Kim, Young Gyu
    • Applied Chemistry for Engineering
    • /
    • v.25 no.5
    • /
    • pp.437-446
    • /
    • 2014
  • The dihydroxylation reaction of allylic amines is a facile and useful synthetic method to obtain amino diol structures that are widely found in lots of biologically important natural products. This review will focus on the recent methods of both substrate-controlled and ligand-controlled dihydroxylation reactions of acyclic allylic amines. In addition, several applications of the diastereoselective dihydroxylation methods to asymmetric syntheses of natural products are presented.

Detection of viability Change of Escherichia coli O157:H7 using Surface Plasmon Resonance

  • Park, Gwang-Won;Lee, U-Chang;Lee, Won-Hong;Choe, Jeong-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.635-638
    • /
    • 2003
  • For the acute assessment on biological toxicity of wastewater, surface plasmon resonance(SPR) based cell viability detection was performed using gold surface-confined cell as a result of adhesion-modifying chemicals. Escherichia coli O157:H7 (E. coli O157:H7) was investigated after exposure to EDTA. Cells were immobilized on gold coated slide glass for SPR analysis by the method of cross-linking carboxyl group on the bacterial surface with amine group of poly-L-lysine that had been coupled to the gold surface modified by a self-assembled monolayer of 11-mercaptounde canoic acid (11-(MUA)). Reflective intensity of each flow step was changed with respect to confect of ethylenediaminetetraacetic acid (EDTA) disodium salt and phosphate-buffered saline (PBS) solution. The proposed detection technique can be used for biological toxicity test.

  • PDF

Nanopatterning of Proteins Using Composite Nanomold and Self-Assembled Polyelectrolyte Multilayers

  • Kim, Sung-Kyu;Kim, Byung-Gee;Lee, Ji-Hye;Lee, Chang-Soo
    • Macromolecular Research
    • /
    • v.17 no.4
    • /
    • pp.232-239
    • /
    • 2009
  • This paper describes the simple nanopatterning of proteins on polyelectrolyte surfaces using microcontact printing with a nanopatternable, hydrophilic composite nanomold. The composite nanomold was easily fabricated by blending two UV-curable materials composed of Norland Optical Adhesives(NOA) 63 and poly(ethylene glycol) dimethacrylate(PEG-DMA). NOA 63 provided stable nanostructure formation and PEG-DMA induced high wettability of proteins in the nanomold. Using the composite mold and functionalized surface with polyelectrolytes, the fluorescent, isothiocyanate-tagged, bovine serum albumin(FITC-BSA) was successfully patterned with 8 nm height and 500 nm width. To confirm the feasibility of the protein assay on a nanoscale, a glycoprotein-lectin assay was successfully demonstrated as a model system. As expected, the lectins correctly recognized the nano-patterned glycoproteins such as chicken ovalbumin. The simple preparation of composite nanomold and functionalized surface with a universal platform can be applied to various biomolecules such as DNA, proteins, carbohydrates, and other biomolecules on a nanoscale.

Identification of inseticidal compound SR 2077 from Actinomycetes isolate No. 2077 (방선균 분리주 No. 2077이 생산하는 살충성 물질 SR 2077의 구조 동정)

  • Oh, Sei-Ryang;Lee, Hyeong-Kyu;Choi, Soo-Keun;Kim, Jeong-Il
    • Applied Biological Chemistry
    • /
    • v.37 no.4
    • /
    • pp.234-236
    • /
    • 1994
  • During the screening of insecticidal compounds from soil microorganisms, SR 2077 was isolated from the metabolites of Actinomycetes isolate No. 2077 and identified as albocycline by UV and NMR data analyses.

  • PDF

A Study on Optimal Attractor Reconstruction of Biological Chaos (생체 카오스의 최적 어트렉터 재구성에 관한 연구)

  • Jang, Jae-Ho;Lee, Byung-Chae;Lee, Myoung-Ho
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.12
    • /
    • pp.142-146
    • /
    • 1994
  • This paper proposes an fill-factor algorithm that determines embedding parameters which are needed in optimal attractor reconstruction. For reliability test, using this algorithm, we reconstructs the attractor of numerical chaotic data such as Duffing equation, Lorenz equation and Rossler equation whose embedding parameters are known. Also we reconstructs the attractor of experimental data and evaluates correlation dimension. Experimental data used in this paper are 38 ECG data of AHA(American Heart Association) ECG database. For numerical chaotic data, correlation dimension and Lyapunov exponent of reconstructed attractor are very close to those of attractor using original coordinate system.

  • PDF

Neuron-on-a-Chip technology: Microelectrode Array System and Neuronal Patterning (뉴런온칩 기술: 미세전극칩시스템과 신경세포 패터닝 기술)

  • Nam, Yoon-Key
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.2
    • /
    • pp.103-112
    • /
    • 2009
  • Neuron-on-a-Chip technology is based on advanced neuronal culture technique, surface micropatterning, microelectrode array technology, and multi-dimensional data analysis techniques. The combination of these techniques allowed us to design and analyze live biological neural networks in vitro using real neurons. In this review article, two underlying technologies are reviewed: Microelectrode array technology and Neuronal patterning technology. There are new opportunities in the fusion of these technologies to apply them in neurobiology, neuroscience, neural prostheses, and cell-based biosensor areas.