Browse > Article

Nanopatterning of Proteins Using Composite Nanomold and Self-Assembled Polyelectrolyte Multilayers  

Kim, Sung-Kyu (School of Chemical and Biological Engineering, Seoul National University)
Kim, Byung-Gee (School of Chemical and Biological Engineering, Seoul National University)
Lee, Ji-Hye (Department of Chemical Engineering, Chungnam National University)
Lee, Chang-Soo (Department of Chemical Engineering, Chungnam National University)
Publication Information
Macromolecular Research / v.17, no.4, 2009 , pp. 232-239 More about this Journal
Abstract
This paper describes the simple nanopatterning of proteins on polyelectrolyte surfaces using microcontact printing with a nanopatternable, hydrophilic composite nanomold. The composite nanomold was easily fabricated by blending two UV-curable materials composed of Norland Optical Adhesives(NOA) 63 and poly(ethylene glycol) dimethacrylate(PEG-DMA). NOA 63 provided stable nanostructure formation and PEG-DMA induced high wettability of proteins in the nanomold. Using the composite mold and functionalized surface with polyelectrolytes, the fluorescent, isothiocyanate-tagged, bovine serum albumin(FITC-BSA) was successfully patterned with 8 nm height and 500 nm width. To confirm the feasibility of the protein assay on a nanoscale, a glycoprotein-lectin assay was successfully demonstrated as a model system. As expected, the lectins correctly recognized the nano-patterned glycoproteins such as chicken ovalbumin. The simple preparation of composite nanomold and functionalized surface with a universal platform can be applied to various biomolecules such as DNA, proteins, carbohydrates, and other biomolecules on a nanoscale.
Keywords
nanomold; polyelectrolyte multilayer; protein patterning;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 D. K. Mandal, N. Kishore, and C. F. Brewer, Biochemistry, 33, 1149 (1994)   DOI   ScienceOn
2 S. Song and K.Y. Lee, Macromol. Res., 14, 121 (2006)   DOI
3 O. Carion, V. Souplet, C. Olivier, C. Maillet, N. Meclard, O. El-Mahdi, J. O. Durand, and O. Melnyk, Chembiochem., 8, 315 (2007)   DOI   ScienceOn
4 R. F. Pease, Nature, 417, 802 (2002)   DOI   PUBMED   ScienceOn
5 Y. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, Chem. Rev., 99, 1823 (1999)   DOI   ScienceOn
6 B. D. Terris, H. J. Mamin, M. E. Best, J. A. Logan, and D. Rugar, Appl. Phys. Lett., 69, 4262 (1996)   DOI   ScienceOn
7 J. P. Rolland, E. C. Hagberg, G. M. Denison, K. R. Carter, and De Simone, Angew. Chem. Int. Ed., 43, 5796 (2004)   DOI   ScienceOn
8 K. Kato, H. Sato, and H. Iwata, Langmuir, 21, 7071 (2005)   DOI   ScienceOn
9 D. T. Haynie, L. Zhang, J. S. Rudra, W. H. Zhao, Y. Zhong, and N. Palath, Biomacromolecules, 6, 2895 (2005)   DOI   ScienceOn
10 J. Feng, C. Gao, B. Wang, and J. Shen, Colloid Surface B, 36, 177 (2004)   DOI   ScienceOn
11 A. Kumar, H. A. Biebuyck, and G. M. Whitesides, Langmuir, 10, 1498 (1994)   DOI   ScienceOn
12 W. B. Nowall, N. Dontha, and W.G. Kuhr, Biosens. Bioelectron., 13, 1237 (1998)   DOI   ScienceOn
13 G. Decher, Science, 277, 1232 (1997)   DOI   ScienceOn
14 P. J. Yoo, S. J. Choi, J. H. Kim, D. Suh, S. J. Baek, T. W. Kim, and H. H. Lee, Chem. Mater., 16, 5000 (2004)   DOI   ScienceOn
15 A. S. Blawas and W. M. Reichert, Biomaterials, 19, 595 (1998)   DOI   ScienceOn
16 L. T. John, T. Joe, and S. C. Christopher, Langmuir, 18, 519 (2002)   DOI   ScienceOn
17 J. L. Wilbur, R. J. Jackman, G. M. Whitesides, E. L. Cheung, L. K. Lee, and M. G. Prentiss, Chem. Mater., 8, 1380 (1996)
18 H. W. Shim, J. H. Lee, T. S. Hwang, Y. W. Rhee, Y. M. Bae, J. S. Choi, J. Han, and C. S. Lee, Biosens. Bioelectron., 22, 3188 (2007)   DOI   ScienceOn
19 F. Caruso, K. Niikura, D. N. Furlong, and Y. Okahata, Langmuir, 13, 3422 (1997)   DOI   ScienceOn
20 S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Science, 272, 85 (1996)   DOI   ScienceOn
21 D. Qin, Y. Xia, and G. M. Whitesides, Adv. Mater., 9, 407 (1997)   DOI   ScienceOn
22 G. S. Ferguson, M. K. Chaudhury, H. A. Biebuyck, and G. M. Whitesides, Macromolecules, 26, 5870 (1993)   DOI   ScienceOn
23 Y. Mine, Trends Food. Sci. Tech., 6, 225 (1995)   DOI   ScienceOn
24 C. R. Yonzon, E. H. Jeoung, S. Zou, G. C. Schatz, M. Mrksich, and R. P. Van Duyne, J. Am. Chem. Soc., 126, 12699 (2004)
25 R. S. Kane, S. Takayama, E. Ostuni, D. E. Ingber, and G. M. Whitesides, Biomaterials, 20, 2363 (1999)   DOI   ScienceOn
26 E. Delamarche, H. Schmid, B. Michel, and H. Biebuyck, Adv. Mater., 9, 741 (1997)   DOI   ScienceOn
27 R. F. M. Lobo, M. A. Pereira-da-silva, M Raposo, R. M. Faria, and O. N. Oliveira, Nanotechnology, 14 101 (2003)   DOI   ScienceOn
28 T. J. Park, S. Y. Lee, S. J. Lee, J. P. Park, K. S. Yang, K. B. Lee, S. Ko, J. B. Park, T. Kim, S. K. Kim, Y. B. Shin, B. H. Chung, S. J. Ku, H. Kim, and I. S. Choi, Anal. Chem., 78, 7197 (2006)   DOI   ScienceOn
29 G. M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, and D. E. Ingber, Annu. Rev. Biomed. Eng., 3, 335 (2001)   DOI   ScienceOn
30 N. Y. Lee, J. R. Lim, M. J. Lee, J. B. Kim, S. J. Jo, H. K. Baik, and Y. S. Kim, Langmuir, 22, 9018 (2006)   DOI   ScienceOn
31 C. S. Lee, S. H. Lee, S. S. Park, Y. K. Kim, and B. G. Kim, Biosens. Bioelectron., 18, 437 (2003)   DOI   ScienceOn
32 P. Sehr, K. Zumbach, and M. Pawlita, J. Immunol. Methods, 253, 153 (2001)   DOI   PUBMED   ScienceOn