DOI QR코드

DOI QR Code

Neuron-on-a-Chip technology: Microelectrode Array System and Neuronal Patterning

뉴런온칩 기술: 미세전극칩시스템과 신경세포 패터닝 기술

  • Published : 2009.04.30

Abstract

Neuron-on-a-Chip technology is based on advanced neuronal culture technique, surface micropatterning, microelectrode array technology, and multi-dimensional data analysis techniques. The combination of these techniques allowed us to design and analyze live biological neural networks in vitro using real neurons. In this review article, two underlying technologies are reviewed: Microelectrode array technology and Neuronal patterning technology. There are new opportunities in the fusion of these technologies to apply them in neurobiology, neuroscience, neural prostheses, and cell-based biosensor areas.

Keywords

References

  1. C. W. Cotman, D. H. Cribbs, and K. H. Kahler, 'Toward Establishing Neural Networks in Culture,' in Enabling Technologies for Cultured Neural Networks, D. A. Stenger and T. M. McKenna, Eds. San Diego, USA: Academic Press, 1994, pp. 3-22
  2. M. Taketani and M. Baudry, Advances in Network Electrophysiology: Using Multi-Electrode Array. New York, USA: Springer, 2006.
  3. C. A. J. Thomas, P. A. Springer, G. E. Loeb, Y. Berwald-Netter, and L. M. Okun, 'A miniature microelectrode array to monitor the bioelectric activity of cultured cells,' Exp. Cell Res., vol. 74, pp. 61-66, 1972 https://doi.org/10.1016/0014-4827(72)90481-8
  4. G. W. Gross, 'Simultaneous single unit recording in vitro with a photoetched laser deinsulated gold multimicroelectrode surface,' IEEE Trans. Biomed. Eng., vol. 26, pp. 273-279, May 1979 https://doi.org/10.1109/TBME.1979.326402
  5. J. Pine, 'Recording action potentials from cultured neurons with extracellular microcircuit electrodes,' J. Neurosci. Methods, vol. 2, pp. 19-31, 1980/2 1980 https://doi.org/10.1016/0165-0270(80)90042-4
  6. J. L. Novak and B. C. Wheeler, 'Recording from the Aplysia abdominal ganglion with a planar microelectrode array,' IEEE Trans. Biomed. Eng., vol. 33, pp. 196-202, February 1986
  7. S. A. Boppart, B. C. Wheeler, and C. S. Wallace, 'A flexible perforated microelectrode array for extended neural recordings,' IEEE Trans. Biomed. Eng., vol. 39, pp. 37-42, 1992 https://doi.org/10.1109/10.108125
  8. U. Egert, B. Schlosshauer, S. Fennrich, W. Nisch, M. Fejtl, T. Knott, T. Müller, and H. Hammerle, 'A novel organotypic long-term culture of the rat hippocampus on substrate-integrated multielectrode array,' Brain Research Protocols, vol. 2, pp. 229-242, 1998 https://doi.org/10.1016/S1385-299X(98)00013-0
  9. K. Mathieson, W. Cunningham, J. Marchal, J. Melone, M. Horn, V. O'Shea, K. M. Smith, A. Litke, E. J. Chichilnisky, and M. Rahman, 'Fabricating high-density microarrays for retinal recording,' Microelectron. Eng., vol. 67-68, pp. 520-527, 2003/6 2003 https://doi.org/10.1016/S0167-9317(03)00109-6
  10. G. W. Gross, W. Y. Wen, and J. W. Lin, 'Transparent indium-tin oxide electrode patterns for extracellular, multisite recording in neuronal cultures,' J. Neurosci. Methods, vol. 15, pp. 243-252, 1985/0 1985 https://doi.org/10.1016/0165-0270(85)90105-0
  11. B. C. Wheeler and J. L. Novak, 'Current source density estimation using microelectrode array data from the hippocampal slice preparation,' IEEE Trans. Biomed. Eng., vol. 33, pp. 1204-1212, December 1986 https://doi.org/10.1109/TBME.1986.325701
  12. D. A. Borkholder, J. Bao, N. I. Maluf, E. R. Perl, and G. T Kovacs, 'Microelectrode arrays for stimulation of neural slice preparations,' J. Neurosci. Methods, vol. 77, pp. 61-6, Nov 7 1997 https://doi.org/10.1016/S0165-0270(97)00112-X
  13. Y. Jimbo, H. P. C. Ronbinson, and A. Kawana, 'Strengthening of synchronized activity by tetanic stimulation in cortical cultures: Application of planar electrode arrays,' IEEE Trans. Biomed. Eng., vol. 45, pp. 1297-1304, November 11 1998 https://doi.org/10.1109/10.725326
  14. H. Oka, K. Shimono, R. Ogawa, H. Sugihara, and M. Taketani, 'A new planar multielectrode array for extracellular recording: application to hippocampal acute slice,' J. Neurosci. Methods, vol. 93, pp. 61-67, 1999/10/30 1999 https://doi.org/10.1016/S0165-0270(99)00113-2
  15. J. R. Buitenweg, W. L. Rutten, E. Marani, S. K. Polman, and J. Ursum, 'Extracellular detection of active membrane currents in the neuron-electrode interface,' J. Neurosci. Methods, vol. 115, pp. 211-221, Apr 15 2002 https://doi.org/10.1016/S0165-0270(02)00021-3
  16. M. O. Heuschkel, M. Fejtl, M. Raggenbass, D. Bertrand, and P. Renaud, 'A three-dimensional multi-electrode array for multisite stimulation and recording in acute brain slices,' J. Neurosci. Methods, vol. 114, pp. 135-148, 2002/3/15 2002 https://doi.org/10.1016/S0165-0270(01)00514-3
  17. T. B. DeMarse, D. A. Wagenaar, A. W. Blau, and S. M. Potter, 'The Neurally Controlled Animat: Biological Brains Acting with Simulated Bodies,' Autonomous Robots, vol. 11, pp. 305-310, 2001 https://doi.org/10.1023/A:1012407611130
  18. G. T. A. Kovac, 'Introduction to the theory, design, and modeling of thin film microelectrodes for neural interfaces,' in Enabling Technologies for Cultured Neural Networks, D. A. Stenger and T. M. McKenna, Eds. San Diego, CA: Academic Press, 1994, pp. 121-165
  19. J. C. Chang, G. J. Brewer, and B. C. Wheeler, 'Microelectrode array recordings of patterned hippocampal neurons for four weeks,' Biomed. Microdevices, vol. 2, pp. 245-253, 2000 https://doi.org/10.1023/A:1009946920296
  20. J. van Pelt, P. S. Wolters, M. A. Corner, W. L. Rutten, and G. J. Ramakers, 'Long-term characterization of firing dynamics of spontaneous bursts in cultured neural networks,' IEEE Trans. Biomed. Eng., vol. 51, pp. 2051-62, Nov 2004 https://doi.org/10.1109/TBME.2004.827936
  21. S. I. Morefield, E. W. Keefer, K. D. Chapman, and G. W. Gross, 'Drug evaluations using neuronal networks cultured on microelectrode arrays,' Biosensors Bioelectron., vol. 15, pp. 383-396, 2000/10 2000 https://doi.org/10.1016/S0956-5663(00)00095-6
  22. S. M. Potter and T. B. DeMarse, 'A new approach to neural cell culture for long-term studies,' J. Neurosci. Methods, vol. 110, pp. 17-24, 2001/9/30 2001 https://doi.org/10.1016/S0165-0270(01)00412-5
  23. D. A. Wagenaar, J. Pine, and S. M. Potter, 'Effective parameters for stimulation of dissociated cultures using multi-electrode arrays,' J. Neurosci. Methods, vol. 138, pp. 27-37, 2004/9/30 2004 https://doi.org/10.1016/j.jneumeth.2004.03.005
  24. M. E. Ruaro, P. Bonifazi, and V. Torre, 'Toward the neurocomputer: image processing and pattern recognition with neuronal cultures,' IEEE Trans. Biomed. Eng., vol. 52, pp. 371-83, Mar 2005 https://doi.org/10.1109/TBME.2004.842975
  25. Y. Nam, J. C. Chang, B. C. Wheeler, and G. J. Brewer, 'Goldcoated microelectrode array with thiol linked self-assembled monolayers for engineering neuronal cultures,' IEEE Trans. Biomed. Eng., vol. 51, pp. 158-165, 2004 https://doi.org/10.1109/TBME.2003.820336
  26. Y. Nam, D. W. Branch, and B. C. Wheeler, 'Epoxy-silane linking of biomolecules is simple and effective for patterning neuronal cultures,' Biosens. Bioelectron., vol. 22, pp. 589-97, Dec 15 2006 https://doi.org/10.1016/j.bios.2006.01.027
  27. H. Golan, K. Mikenberg, V. Greenberger, and M. Segal, 'GABA withdrawal modifies network activity in cultured hippocampal neurons,' Neural Plas., vol. 7, pp. 31-42, 2000 https://doi.org/10.1155/NP.2000.31
  28. D. M. Sokal, R. Mason, and T. L. Parker, 'Multi-neuronal recordings reveal a differential effect of thapsigargin on bicuculline- or gabazine-induced epileptiform excitability in rat hippocampal neuronal networks,' Neuropharmacology, vol. 39, pp. 2408-17, Sep 2000 https://doi.org/10.1016/S0028-3908(00)00095-2
  29. I. Suzuki, Y. Sugio, Y. Jimbo, and K. Yasuda, 'Stepwise pattern modification of neuronal network in photo-thermally-etched agarose architecture on multi-electrode array chip for individualcell- based electrophysiological measurement,' Lab on a Chip, vol. 5, pp. 241-7, Mar 2005 https://doi.org/10.1039/b406885h
  30. J. V. Selinger, J. J. Pancrazio, and G. W. Gross, 'Measuring synchronization in neuronal networks for biosensor applications,' Biosensors Bioelectron., vol. 19, pp. 675-683, 2004/2/15 2004 https://doi.org/10.1016/S0956-5663(03)00267-7
  31. Y. Jimbo, A. Kawana, P. Parodi, and V. Torre, 'The dynamics of a neuronal culture of dissociated cortical neurons of neonatal rats,' Biol. Cybern., vol. 83, pp. 1-20, 2000 https://doi.org/10.1007/PL00007970
  32. D. A. Wagenaar, R. Madhavan, J. Pine, and S. M. Potter, 'Controlling bursting in cortical cultures with closed-loop multi-electrode stimulation,' The Journal of Neuroscience, vol. 25, pp. 680-8, Jan 19 2005 https://doi.org/10.1523/JNEUROSCI.4209-04.2005
  33. R. Segev, Y. Shapira, M. Benveniste, and E. Ben-Jacob, 'Observation and modeling of synchronized bursting in two-dimensional neural network,' Physical Review E, vol. 64, 2001
  34. G. Shahaf and S. Marom, 'Learning in networks of cortical neurons,' The Journal of Neuroscience, vol. 21, pp. 8782-8788, November 15 2001
  35. C. D. James, A. J. Spence, N. M. Dowell-Mesfin, R. J. Hussain, K. L. Smith, H. G. Craighead, M. S. Isaacson, W. Shain, and J. N. Turner, 'Extracellular recordings from patterned neuronal networks using planar microelectrode arrays,' IEEE Trans. Biomed. Eng., vol. 51, pp. 1640-1648, 2004 https://doi.org/10.1109/TBME.2004.827252
  36. Y. Nam and B. C. Wheeler, 'Multichannel recording and stimulation of neuronal cultures grown on microstamped poly- D-lysine,' in the 26th Annual International Conference of the IEEE Engineering In Medicine And Biology Society, San Francisco, CA, 2004
  37. Y. Jimbo, N. Kasai, K. Torimitsu, T. Tateno, and H. Robinson, 'A System for MEA-Based Multisite Stimulation,' IEEE Trans. Biomed. Eng., vol. 50, pp. 241-248, 2004 https://doi.org/10.1109/TBME.2002.805470
  38. Y. Nam, E. A. Brown, J. D. Ross, R. A. Blum, B. C. Wheeler, and S. P. DeWeerth, 'A retrofitted neural recording system with a novel stimulation IC to monitor early neural responses from a stimulating electrode,' J. Neurosci. Methods, vol. 178, pp. 99-102, Mar 30 2009 https://doi.org/10.1016/j.jneumeth.2008.11.017
  39. B. Eversmann, M. Jenkner, F. Hofmann, C. Paulus, R. Brederlow, B. Holzapfl, P. Fromherz, M. Merz, M. Brenner, M. Schreiter, R. Gabl, K. Plehnert, M. Steinhauser, G. Eckstein, D. Schmitt- Landsiedel, and R. Thewes, 'A 128 CMOS Biosensor Array for Extracellular Recording of Neural Activity,' IEEE Journal of Solid-State Circuits, vol. 38, pp. 2306-2317, 2003. https://doi.org/10.1109/JSSC.2003.819174
  40. W. Dabrowski, P. Grybos, and A. M. Litke, 'A low noise multichannel integrated circuit for recording neuronal signals using microelectrode arrays,' Biosensors Bioelectron., vol. 19, pp. 749-761, 2004/2/15 2004 https://doi.org/10.1016/j.bios.2003.08.005
  41. F. Heer, W. Franks, A. Blau, S. Taschini, C. Ziegler, A. Hierlemann, and H. Baltes, 'CMOS microelectrode array for the monitoring of electrogenic cells,' Biosensors Bioelectron., vol. 20, pp. 358-366, 2004/9/15 2004 https://doi.org/10.1016/j.bios.2004.02.006
  42. L. Berdondini, P. D. van der Wal, O. Guenat, N. F. de Rooij, M. Koudelka-Hep, P. Seitz, R. Kaufmann, P. Metzler, N. Blanc, and S. Rohr, 'High-density electrode array for imaging in vitro electrophysiological activity,' Biosensors Bioelectron., vol. 21, pp. 167-174, 2005/7/15 2005 https://doi.org/10.1016/j.bios.2004.08.011
  43. E. Hulata, R. Segev, and E. Ben-Jacob, 'A method for spike sorting and detection based on wavelet packets and Shannon's mutual information,' J. Neurosci. Methods, vol. 117, pp. 1-12, 2002/5/30 2002 https://doi.org/10.1016/S0165-0270(02)00032-8
  44. K. H. Kim and S. J. Kim, 'A wavelet-based method for action potential detection from extracellular neural signal recording with low signal-to-noise ratio,' IEEE Trans. Biomed. Eng., vol. 50, pp. 999-1011, Aug 2003 https://doi.org/10.1109/TBME.2003.814523
  45. K. H. Kim and S. J. Kim, 'Neural spike sorting under nearly 0-dB signal-to-noise ratio using nonlinear energy operator and artificial neural-network classifier,' IEEE Trans. Biomed. Eng., vol. 47, pp. 1406-11, Oct 2000 https://doi.org/10.1109/10.871415
  46. B. C. Wheeler, 'Automatic Discrimination of Single Units,' in Methods for Neural Ensemble Recordings, M. A. L. Nicolelis, Ed. New York: CRC, 1999, pp. 61-78
  47. S. Marom and G. Shahaf, 'Development, learning and memory in large random networks of cortical neurons: lessons beyond anatomy,' Q. Rev. Biophys., vol. 35, pp. 63-87, Feb 2002
  48. G. W. Gross, B. K. Rhoades, H. M. Azzazy, and M. C. Wu, 'The use of neuronal networks on multielectrode arrays as biosensors,' Biosensors Bioelectron., vol. 10, pp. 553-67, Summer 1995 https://doi.org/10.1016/0956-5663(95)96931-N
  49. R. Madhavan, Z. C. Chao, and S. M. Potter, 'Spontaneous bursts are better indicators of tetanus-induced plasticity than responses to probe stimuli,' in the 2nd International IEEE EMBS Conference on Neural Engineering, Arlington, Virginia, 2005
  50. R. Segev, I. Baruchi, E. Hulata, and E. Ben-Jacob, 'Hidden neuronal correlations in cultured networks,' Phys. Rev. Lett., vol. 92, p. 118102, Mar 19 2004 https://doi.org/10.1103/PhysRevLett.92.118102
  51. Y. Jimbo, T. Tateno, and H. Robinson, 'Simultaneous Induction of Pathway-Specific Potentiation and Depression in Networks of Cortical Neurons,' Biophys. J., vol. 76, pp. 670-678, Feb. 1999 1999 https://doi.org/10.1016/S0006-3495(99)77234-6
  52. D. Eytan, N. Brenner, and S. Marom, 'Selective adaptation in networks of cortical neurons,' The Journal of Neuroscience, vol. 23, pp. 9349-56, Oct 15 2003
  53. P. C. Letourneau, 'Cell-to-Substratum Adhesion and Guidance of Axonal Elongation,' Dev. Biol., vol. 44, pp. 92-101, 1975 https://doi.org/10.1016/0012-1606(75)90379-6
  54. D. Kleinfeld, K. H. Kahler, and P. E. Hockberger, 'Controlled outgrowth of dissociated neurons on patterned substrates,' The Journal of Neuroscience, vol. 8, pp. 4098-4120, 1988
  55. A. Kumar and G. M. Whitesides, 'Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ``ink'' followed by chemical etching,' Appl. Phys. Lett., vol. 63, pp. 2002-2004, 1993/10/04/ 1993. https://doi.org/10.1063/1.110628
  56. A. Bernard, E. Delamarche, S. Heinz, M. Bruno, H. R. Bosshard, and H. Biebuyck, 'Printing Patterns of Proteins,' Langmuir, vol. 14, pp. 2225-2229, 1998 https://doi.org/10.1021/la980037l
  57. D. W. Branch, B. C. Wheeler, G. J. Brewer, and D. E. Leckband, 'Long-term maintenance of patterns of hippocampal pyramidal cells on substrates of polyethylene glycol and microstamped polylysine,' IEEE Trans. Biomed. Eng., vol. 47, pp. 290-300, March 2000 https://doi.org/10.1109/10.827289
  58. J. C. Chang, 'Technologies for and electrophysiological studies of structured, living, neuronal networks on microelectrode array,' in Elect. and Comp. Eng Urbana, IL: University of Illinois, 2002
  59. C. D. James, R. C. Davis, L. Kam, H. G. Craighead, M. Isaacson, J. N. Turner, and W. Shain, 'Patterned Protein Layers on Solid Substrates by Thin Stamp Microcontact Printing,' Langmuir, vol. 14, pp. 741-744, 1998 https://doi.org/10.1021/la9710482
  60. M. Scholl, C. Sprössler, M. Denyer, M. Krause, K. Nakajima, A. Maelicke, W. Knoll, and A. Offenhäusser, 'Ordered networks for rat hippocampal neurons attached to silicon oxide surfaces,' J. Neurosci. Methods, vol. 104, pp. 65-75, 2000 https://doi.org/10.1016/S0165-0270(00)00325-3
  61. J. L. Tan, J. Tien, and C. S. Chen, 'Microcontact printing of proteins on mixed self-assembled monolayers,' Langmuir, vol. 18, pp. 519-523, 2002 https://doi.org/10.1021/la011351+
  62. D. W. Branch, J. M. Corey, J. A. Weyhenmeyer, G. J. Brewer, and B. C. Wheeler, 'Microstamp patterns of biomolecules for highresolution neuronal networks,' Med Biol Eng Comput, vol. 36, pp. 135-141, Jan 1998 https://doi.org/10.1007/BF02522871
  63. B. Ilic and H. Craighead, 'Topographical patterning of chemically sensitive biological materials using a polymer-based dry lift off,' Biomed. Microdevices, vol. 2, pp. 371-322, 2000
  64. A. Folch, B. H. Jo, O. Hurtado, D. J. Beebe, and M. Toner, 'Microfabricated elastomeric stencils for micropatterning cell cultures,' J. Biomed. Mater. Res., vol. 52, pp. 346-53, Nov 2000 https://doi.org/10.1002/1097-4636(200011)52:2<346::AID-JBM14>3.0.CO;2-H
  65. C. Wyart, C. Ybert, L. Bourdieu, C. Herr, C. Prinz, and D. Chatenay, 'Constrained synaptic connectivity in functional mammalian neuronal networks grown on patterned surfaces,' J. Neurosci. Methods, vol. 117, pp. 123-131, 2002/6/30 2002 https://doi.org/10.1016/S0165-0270(02)00077-8
  66. J. Vielmetter, B. Stolze, F. Bonhoeffer, and C. Stuermer, 'In vitro assay to test differential substrate affinities of growing axons and migratory cells,' Exp. Brain Res., vol. 81, pp. 283-287, 1990
  67. N. Li Jeon, H. Baskaran, S. K. Dertinger, G. M. Whitesides, L. Van de Water, and M. Toner, 'Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device,' Nat. Biotechnol., vol. 20, pp. 826-30, Aug 2002
  68. A. M. Taylor, M. Blurton-Jones, S. W. Rhee, D. H. Cribbs, C. W. Cotman, and N. L. Jeon, 'A microfluidic culture platform for CNS axonal injury, regeneration and transport,' Nat Methods, vol. 2, pp. 599-605, Aug 2005 https://doi.org/10.1038/nmeth777
  69. G. J. Brewer, J. R. Torricelli, E. K. Evege, and P. J. Price, 'Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination,' J. Neurosci. Res., vol. 35, pp. 567-576, Aug 1 1993 https://doi.org/10.1002/jnr.490350513
  70. A. A. Oliva, C. D. James, C. E. Kingman, H. G. Craighead, and G. A. Banker, 'Patterning Axonal Guidance Molecules Using a Novel Strategy for Microcontact Printing,' Neurochem. Res., vol. 28, pp. 1639-1648, 2003/11// 2003 https://doi.org/10.1023/A:1026052820129
  71. J. M. Corey, B. C. Wheeler, and G. J. Brewer, 'Micrometer resolution silane-based patterning of hippocampal neurons: Critical variables in photoresist and laser ablation processes for substrate fabrication,' IEEE Trans. Biomed. Eng., vol. 43, pp. 944-955, September 1996 https://doi.org/10.1109/10.532129
  72. J. M. Corey, B. C. Wheeler, and G. J. Brewer, 'Compliance of hippocampal neurons to patterned substrate networks,' J. Neurosci. Res., vol. 30, pp. 300-307, 1991 https://doi.org/10.1002/jnr.490300204
  73. W. Ma, Q.-Y. Liu, D. R. Jung, P. Manos, J. J. Pancrazio, A. E. Schaffner, J. L. Barker, and D. A. Stenger, “Central neuronal synapse formation on micropatterned surfaces,” Dev. Brain Res., vol. 111, pp. 231-243, 1998 https://doi.org/10.1016/S0165-3806(98)00142-4
  74. M. S. Ravenscroft, K. E. Bateman, K. M. Schffer, H. M. Schessler, D. R. Jung, T. W. Schneider, C. B. Montgomery, T. L. Custer, A. E. Schaffner, Q.-Y. Liu, Y. X. Li, J. L. Barker, and J. J. Hickman, 'Developmental neurobiology implications from fabrication and analysis of hippocampal neuronal networks on patterned silane-modified surfaces,' J. Am. Chem. Soc., vol. 120, pp. 12169-12177, 1998 https://doi.org/10.1021/ja973669n
  75. M. Amiji and K. Park, 'Prevention of protein adsorption and platelet adhesion on surfaces by PEO/PPO/PEO triblock copolymers,' Biomaterials, vol. 13, pp. 682-690, 1992 https://doi.org/10.1016/0142-9612(92)90128-B
  76. M. Matsuzawa, T. Tabata, W. Knoll, and M. Kano, “Formation of hippocampal synapses on patterned substrates of a lamininderived synthetic peptide,” Eur. J. Neurosci., vol. 12, pp. 903-910, 2000 https://doi.org/10.1046/j.1460-9568.2000.00977.x
  77. A. K. Vogt, F. D. Stefani, A. Best, G. Nelles, A. Yasuda, W. Knoll, and A. Offenhausser, 'Impact of micropatterned surfaces on neuronal polarity,' J. Neurosci. Methods, vol. 134, pp. 191-198, 2004/4/30 2004 https://doi.org/10.1016/j.jneumeth.2003.11.004
  78. D. A. Heller, V. Garga, K. J. Kelleher, T. C. Lee, S. Mahbubani, L. A. Sigworth, T. R. Lee, and M. A. Rea, 'Patterned networks of mouse hippocampal neurons on peptide-coated gold surfaces,' Biomaterials, vol. 26, pp. 883-9, Mar 2005 https://doi.org/10.1016/j.biomaterials.2004.03.029
  79. Y. Nam, G. J. Brewer, and B. C. Wheeler, 'Development of astroglial cells in patterned neuronal cultures,' J. Biomater. Sci. Polym. Ed., vol. 18, pp. 1091-100, 2007 https://doi.org/10.1163/156856207781494430
  80. Q.-Y. Liu, M. Coulombe, J. Dumm, K. M. Shaffer, A. E. Schaffner, J. L. Barker, J. J. Pancrazio, D. A. Stenger, and W. Ma, 'Synaptic connectivity in hippocampal neuronal networks cultured on micropatterned surfaces,' Dev. Brain Res., vol. 12, pp. 223-231, 2000
  81. J. C. Chang, G. J. Brewer, and B. C. Wheeler, 'Modulation of neural network activity by patterning,' Biosensors Bioelectron., vol. 16, pp. 527-533, 2001 https://doi.org/10.1016/S0956-5663(01)00166-X
  82. J. C. Chang, G. J. Brewer, and B. C. Wheeler, 'Neuronal network structuring induces greater neuronal activity through enhanced astroglial development,' J Neural Eng, vol. 3, pp. 217-26, Sep 2006 https://doi.org/10.1088/1741-2560/3/3/004