• Title/Summary/Keyword: Biological Activated Carbon

Search Result 222, Processing Time 0.019 seconds

Removal of Geosmin and 2-MIB using Biological Activated Carbon Process (생물활성탄(BAC) 공정을 이용한 이취미물질(geosmin, 2-MIB)의 생분해 특성평가)

  • Son, Dong-Min;Son, Hee-Jong;Lee, Hwa-Ja;Kang, Lim-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.2
    • /
    • pp.189-198
    • /
    • 2009
  • Tastes and odor in water caused by geosmin and 2-MIB are the major customer complaints for water utilities. Therefore, control of geosmin and 2-MIB is a worldwide concern. In this study, the effects of biofilter media type (three different activated carbons and anthracite), empty bed contact time (EBCT) and temperature on the removal of geosmin and 2-MIB in BAC filters were investigated. Experiments were conducted at three different water temperatures (5, 15 and $25^{\circ}C$) and four different EBCTs (5, 10, 15, and 20 min). The experimental results indicated that the coal based BAC retained more bacterial biomass on the surface of the activated carbon than the other BACs, and increasing EBCT or increasing water temperature also increased the geosmin and 2-MIB removal in BAC filters. To achieve above 50% of removal efficiency for geosmin and 2-MIB in a BAC filter, above 10 min EBCT at $5^{\circ}C$ and 5 min EBCT at above $15^{\circ}C$ were required. The kinetic analysis for the biodegradation of geosmin and 2-MIB indicated a first-order reaction rate at various water temperatures. Data obtained from the BAC filters at various temperatures were also used to evaluate pseudo first-order rate constants for geosmin and 2-MIB. The half-lives evaluated at 5, 15, and $25^{\circ}C$ for geosmin and 2-MIB ranged from 2.39 to 10.31 min and 3.35 to 13.97 min, respectively, which can be used to assist water utilities in designing and operating BAC system.

Analysis of Bacterial Community Structure of Biological Activated Carbon Process in Drinking Water Treatment Plant Using FISH (FISH법을 이용한 정수처리장 내 생물활성탄 공정의 세균군집 구조 분석)

  • Son, Hyeng-Sik;Kim, Mi-A;Jeong, Seong-Yun;Kim, Young-Hun;Son, Hee-Jong;Park, Geun-Tae;Kim, Min-Ju;Ryu, Eun-Yeon;Lee, Sang-Joon
    • Journal of Environmental Science International
    • /
    • v.17 no.5
    • /
    • pp.555-564
    • /
    • 2008
  • The bacterial community structure in biological activated carbon (BAC) process in drinking water treatment plant was investigated by Fluorescent in situ Hybridization (FISH) with rRNA-targeted oligonucleotide probe. Samples were collected at different three points in BAC process every month for one year. They were hybridized with a probe specific for the alpha, beta, gamma subclass of the class Proteobacteria, Cytophaga-Flavobacteria group and Gram-positive high G+C content (HGC) group. Total numbers of bacteria in BAC process counted by 4',6-diamidino-2-phenylindole (DAPI) staining were $5.4{\times}10^{10}$ (top), $4.0{\times}10^{10}$ (middle) and $2.8{\times}10^{10}$ cells/ml (bottom). The number of the culturable bacteria was from $1.0{\times}10^7$ to $3.6{\times}10^7$ cells/ml and the culturability was about 0.05%. The faction of bacteria detectable by FISH with the probe EUB338 was about 83% of DAPI counts. Gamma and alpha subclass of the class Proteobacteria were predominant in BAC process and their ratios were over 20% respectively. In top and middle, alpha, beta and gamma subclass of the class Proteobacteria competed with each other and their percentages was changed according to the season. In bottom, gamma subclass of the class Proteobacteria was predominant all through the year. It could be successfully observed the seasonal distribution of bacterial community in biological activated carbon process using FISH.

Synthetic Musk Compounds Removal Using Biological Activated Carbon Process in Drinking Water Treatment (정수처리용 생물활성탄 공정에서의 인공 사향물질의 제거 특성)

  • Seo, Chang-Dong;Son, Hee-Jong;Yoom, Hoon-Sik;Choi, Dong-Hoon;Ryu, Dong-Choon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.3
    • /
    • pp.195-203
    • /
    • 2012
  • In this study, The effects of three different biological activated carbon (BAC) materials (each coal, coconut and wood based activated carbons) and anthracite, empty bed contact time (EBCT) and water temperature on the removal of MK, HHCB and AHTN in BAC filters were investigated. Experiments were conducted at three water temperatures (5, 15 and $25^{\circ}C$) and four EBCTs (5, 10, 15 and 20 min). The results indicated that coal based BAC retained more attached bacterial biomass on the surface of the activated carbon than the other BAC, increasing EBCT or increasing water temperature increased the synthetic musk compounds (SMCs) removal in BAC columns. The kinetic analysis suggested a first-order reaction model for MK, HHCB and AHTN removal at various water temperatures (5, 15 and $25^{\circ}C$). The pseudo-first-order biodegradation rate constants and half-lives were also calculated for MK, HHCB and AHTN removal at 5, 15 and $25^{\circ}C$. The pseudo-first-order biodegradation rate constants and half-lives of MK, HHCB and AHTN ranging from 0.0082 $min^{-1}$ to 0.4452 $min^{-1}$ and from 1.56 min to 84.51 min could be used to assist water utilities in designing and operating BAC filters for SMCs removal.

오존 전처리 공정이 생물활성탄 공정의 효율에 미치는 영향

  • Lee, Sang-Hun;Mun, Sun-Sik;Sin, Jong-Cheol;Choe, Gwang-Geun;Park, Dae-Won;Sim, Sang-Jun;Lee, Jin-Won
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.361-364
    • /
    • 2002
  • BAC (biological activated carbon) process is a combination of biodegradation and active carbon adsorption. Pre-ozonation of raw water increased in biodegradable organic fraction. This study is to investigate the enhancement of dissolved organic matter removals by pre-ozonation process combined with BAC process at a semi-pilot scale. By biodegradation improvement in pre-ozonation process. the charge of adsorption was reduced and the life of biological activated carbon is extended. And, 48 % of total DOC was remove in the upper compartment of BAC column. The removal of the nitrogen-ammonia shows a considerably high removal ratio with 75.9 %.

  • PDF

Microwave-assisted pretreatment technologies for the conversion of lignocellulosic biomass to sugars and ethanol: a review

  • Puligundla, Pradeep;Oh, Sang-Eun;Mok, Chulkyoon
    • Carbon letters
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • Lignocellulosic biomass conversion to biofuels such as ethanol and other value-added bio-products including activated carbons has attracted much attention. The development of an efficient, cost-effective, and eco-friendly pretreatment process is a major challenge in lignocellulosic biomass to biofuel conversion. Although several modern pretreatment technologies have been introduced, few promising technologies have been reported. Microwave irradiation or microwave-assisted methods (physical and chemical) for pretreatment (disintegration) of biomass have been gaining popularity over the last few years owing to their high heating efficiency, lower energy requirements, and easy operation. Acid and alkali pretreatments assisted by microwave heating meanwhile have been widely used for different types of lignocellulosic biomass conversion. Additional advantages of microwave-based pretreatments include faster treatment time, selective processing, instantaneous control, and acceleration of the reaction rate. The present review provides insights into the current research and advantages of using microwave-assisted pretreatment technologies for the conversion of lignocellulosic biomass to fermentable sugars in the process of cellulosic ethanol production.

Preparation of Pelletized Porous Adsorbent with Pyrolysis Temperature and Its Toluene Gas Adsorption Characteristics (열분해 조건에 따른 펠렛형 다공성 흡착재의 제조 및 톨루엔 가스 흡착 특성)

  • Kim, Do Young;Kim, Yesol;Cho, Seho;Jung, Jin-Young;Kim, Min Il;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.24 no.6
    • /
    • pp.587-592
    • /
    • 2013
  • In this study, we prepared pelletized porous carbon adsorbent (PCA) according to the different pyrolysis temperature using activated carbon and polyvinyl alcohol (PVA) as a binder for the removal of toluene, which is one of the representative volatile organic compounds (VOCs). We investigated physical characteristics of PCA using FE-SEM, BET, TGA and evaluated their adsorption capacity for toluene using GC. It was confirmed that the formability of pellets composed of the activated carbon, PVA and solvent of mass mixing ratio was 1 : 0.2 : 0.8 was the most outstanding. Toluene adsorption capacity was evaluated by measuring the maximum time when more than 99% of toluene adsorbed on the pellet. The specific surface area of the adsorbent pyrolyzed at $300^{\circ}C$ was measured as 4.7 times in $941.9m^2/g$ compared to that of the unpyrolyzed pellet. Micropore volume and toluene adsorption capacity of PCA increased fivefold to be 0.30 cc/g and thirteenfold to be 26 hours compared to that of the unpyrolyzed pellet, respectively. These results were attributed to the change of pore size and specific surface area due to the PVA content and the different pyrolysis temperature.

Biological Treatability of Toxic Industrial Wastewater (독성산업폐수의 생물학적 처리)

  • 원성연;박승국;정근욱
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.4
    • /
    • pp.172-179
    • /
    • 1999
  • In this research, biological treatability test was conduced using seawater flocculated tannery wastewater by fixed biofilm reactor. During one cycle, the removal efficiency of organic corbon obtained with fixed biofilm process for treating tannery wastewater was considerably greater than that with activated sludge process. As the hydraulic retention time increased form 0.5day to 4day, removal efficiency of organic carbon was increased from 72% to 87.3%. Attached biomass in media increased with influent organic loading up to 29g MLSS/L, that could reduce the specific organic loading rate. The continual measurement of attached biomass was possible for the operation of the biofilm reactor. Equal and low nitrication rates were observed in both suspended growth activated sludge process and fixed biofilm process, despite commercial nitrifier was seeded. Through the process of treating the tannery wastewater, EC50 values which is measured by the use of Ceriopdaphnia dubia, were decreased to the extent of 50% after treatment of seawater flocculation and of 83% after biological treatment, respectively, compared to those of the untreated wastewater.

  • PDF

Applications of Acid/Base Modified Activated Carbon for Stabilization of Sediment Contaminated with Organic Compounds (산/염기 개질활성탄을 이용한 유기오염물질 오염 퇴적토 안정화를 위한 적용성 연구)

  • Seunghyun Kang;Jaewoo Park
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.5
    • /
    • pp.5-13
    • /
    • 2024
  • This paper investigates the stabilization feasibility of contaminated sediment contaminated with benzyl butyl phthalate (BBP) using acid/base-modified activated carbon. The efficiency of stabilizers was evaluated by analyzing the impact of the activated carbon on the decomposition and adsorption of the contaminant, along with the biological effects on earthworms. Additionally, the contaminant migration was monitored with the BBP concentration in pore water using low-density polyethylene. The research results indicated that the accumulated concentration of BBP was approximately 2% lower in the experimental group applying a 5% mixture ratio of modified activated carbon compared to the group applying a 10% mixture ratio. The leaching into water was reduced by over 18% in all experimental conditions after 7-day exposure period. Over 25% reduction was observed after 28-day exposure. The pore water concentrations were measured. After 7 days of exposure, the mechanically mixed experimental group exhibited a higher pore water stabilization rate compared to the biologically mixed group. Within the mechanically mixed group, the experimental group with 10% mixture of modified activated carbon showed a 1% higher stabilization rate than the group with 5% mixture. After 28 days of exposure, the biologically mixed experimental group demonstrated a higher pore water stabilization rate compared to the mechanically mixed group. Moreover, within the biologically mixed group, the experimental group with 10% mixture of modified activated carbon showed approximately 0.1% higher stabilization rate than the group with 5% mixture.

Adsorption of Methylene Blue by Soybean Stover and Rice Hull Derived Biochars Compared to that by Activated Carbon (메틸렌블루 제거 시 활성탄과 바이오차(대두줄기와 쌀겨)의 흡착성능 비교)

  • Lee, Gi-Bong;Kim, Hyeon-Joo;Park, Soo-Gyeong;Ok, Yong-Sik;Ahn, Johng-Hwa
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.3
    • /
    • pp.291-296
    • /
    • 2016
  • This study investigated the potential use of soybean stover (SS) (0.1-0.5 g/100 mL)and rice hull (RH) (1.5-3.5 g/100 mL) derived biochars for removing methylene blue (100 mg/L) from wastewater compared to activated carbon (AC) (0.1-0.5 g/100 mL). The adsorption equilibrium data were best represented by Langmuir adsorption isotherm. The calculated maximum adsorption capacity was 71.42 mg/g for AC, 30.30 mg/g for SS, and 4.76 mg/g for RH. The adsorption kinetics was found to follow the pseudo-second order kinetics model. The rate constant was 0.0020-0.0065 g/mg.min for AC, 0.0069-0.5787 g/mg.min for SS, and 0.1370-0.3060 for RH. AC and SS biochars showed considerable potential for adsorption.

Water Treatment Method for Removal of Trihalomethanes, Pesticides, Heavy Metals and Detergent in Drinking Water (1). -Effective Removal Method of Trihalomethanes in Drinking Water- (상수중 Trihalomethanes, 농약, 중금속 및 합성세제의 효율적인 제거를 위한 수처리 방법 제 1보. -상수중 Trihalomethanes의 효율적인 제거방법-)

  • Park, Jong-Woo;Kim, Jang-Eok
    • Applied Biological Chemistry
    • /
    • v.37 no.6
    • /
    • pp.472-479
    • /
    • 1994
  • This study was conducted to determine the effective removal method of THMs and humic material in drinking water when the doses of oxidants, coagulants, and activated carbon, and the points of oxidants treatment were changed in the drinking water treatment process. The inhibition of THMs formation and the removal of humic matter were more effectively achieved by $ClO_2$ than by other oxidants, $Cl_2,\;NH_2Cl,\;KMnO_4\;and\;O_3$. By changing the point of oxidant treatment, the formation of THMs was reduced by about 36.7 to 8.2% on treatment after coagulation, but the content of humic matter was not affected. The coagulation efficiency of alum and ferric sulfate to coagulate organic materials in water was affected by the molecular weight of humic matter in drinking water. The treatment of activated carbon after filtration was found to be more effective than that before oxidation in inhibiting THMs formation and removing THMs.

  • PDF