DOI QR코드

DOI QR Code

Applications of Acid/Base Modified Activated Carbon for Stabilization of Sediment Contaminated with Organic Compounds

산/염기 개질활성탄을 이용한 유기오염물질 오염 퇴적토 안정화를 위한 적용성 연구

  • Seunghyun Kang (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Jaewoo Park (Department of Civil and Environmental Engineering, Hanyang University)
  • Received : 2024.02.29
  • Accepted : 2024.04.16
  • Published : 2024.05.01

Abstract

This paper investigates the stabilization feasibility of contaminated sediment contaminated with benzyl butyl phthalate (BBP) using acid/base-modified activated carbon. The efficiency of stabilizers was evaluated by analyzing the impact of the activated carbon on the decomposition and adsorption of the contaminant, along with the biological effects on earthworms. Additionally, the contaminant migration was monitored with the BBP concentration in pore water using low-density polyethylene. The research results indicated that the accumulated concentration of BBP was approximately 2% lower in the experimental group applying a 5% mixture ratio of modified activated carbon compared to the group applying a 10% mixture ratio. The leaching into water was reduced by over 18% in all experimental conditions after 7-day exposure period. Over 25% reduction was observed after 28-day exposure. The pore water concentrations were measured. After 7 days of exposure, the mechanically mixed experimental group exhibited a higher pore water stabilization rate compared to the biologically mixed group. Within the mechanically mixed group, the experimental group with 10% mixture of modified activated carbon showed a 1% higher stabilization rate than the group with 5% mixture. After 28 days of exposure, the biologically mixed experimental group demonstrated a higher pore water stabilization rate compared to the mechanically mixed group. Moreover, within the biologically mixed group, the experimental group with 10% mixture of modified activated carbon showed approximately 0.1% higher stabilization rate than the group with 5% mixture.

본 논문에서는 유기오염물질인 benzyl butyl phthalate(BBP)에 오염된 퇴적토를 산/염기 개질활성탄을 이용한 퇴적토의 안정화 과정과 그 영향을 연구하였다. 실험을 통해 안정화제의 효율성을 평가하고, Lumbriculus variegatus를 이용한 생물학적 영향과 함께 개질활성탄의 혼합량 증가가 오염물질의 흡착에 미치는 영향을 분석하였다. 또한, low-density polyethylene를 사용한 공극수 내 유기오염물질 농도 측정을 통해 안정화제가 환경 내 오염물질의 이동을 어떻게 제한하는지에 대해 조사하였다. 연구 결과 Lumbriculus variegatus의 생존률이 90% 이상을 나타내었으며, 체내 BBP 축적 농도는 개질활성탄을 10% 혼합한 두 실험군보다 개질활성탄을 5% 혼합한 두 실험군이 약 2% 낮은 농도를 나타내었다. 수중으로의 용출량은 노출기간 7일 경과 후 모든 실험조건에서 대조군 대비 18% 이상 저감 되었으며, 노출기간 28일 후 모든 실험조건에서 25% 이상 저감된 효율을 확인하였다. 공극수의 농도를 측정하였다. 7일 노출 후의 결과는 기계혼합 실험군이 생물혼합 실험군 보다 높은 안정화율을 보였으며, 기계혼합 실험군에서, 개질활성탄을 10% 혼합한 실험군이 개질활성탄을 5% 혼합한 실험군 보다 1% 높은 안정화율을 보였다. 28일간 노출 후의 결과는 생물혼합 실험군이 기계혼합 실험군보다 높은 안정화율을 보였으며, 개질활성탄을 10% 혼합한 생물혼합 실험군이 개질활성탄을 5% 혼합한 실험군보다 약 0.1% 높은 안정화율을 보였다.

Keywords

References

  1. Abel, S. and Akkanen, J. (2019), Novel, activated carbon-based material for in-situ remediation of contaminated sediments, Environmental science & technology, Vol. 53, No. 6, pp. 3217~3224. 
  2. Choi, Y., Thompson, J. M., Lin, D., Cho, Y. M., Ismail, N. S., Hsieh, C. H. and Luthy, R. G. (2016), Secondary environmental impacts of remedial alternatives for sediment contaminated with hydrophobic organic contaminants, Journal of hazardous materials, Vol. 304, pp. 352~359. 
  3. Harwood, A. D. , Nutile, S. A. and Simpson, A. M. (2022), A comparison of activated carbon remediation success in floodplain soils contaminated with DDT and its metabolites using ex situ and in situ experimentation, Environmental Pollution, Vol. 295, 118687. pp. 1~8. 
  4. Hong, S . H., Hwang, S. , Lee, C . G . and P ark, S . J. (2023), Stabilization of As-contaminated dredged sediment using Al-and Fe-impregnated food waste biochar, Journal of Soils and Sediments, Vol. 23, pp. 2628~2640. 
  5. Kim, D., Kim, C., Chun, B. and Park, J. W. (2012), Enhanced heavy metal sorption by surface-oxidized activated carbon does not affect the PAH sequestration in sediments, Water, Air, & Soil Pollution, Vol. 223, pp. 3195~3206. 
  6. Kim, D. , Min, J. , Yoo, J . Y. and P ark, J . W. (2014), E isenia fetida growth inhibition by amended activated carbon causes less bioaccumulation of heavy metals, Journal of soils and sediments, Vol. 14, pp. 1766~1773. 
  7. Kupryianchyk, D., Noori, A., Rakowska, M. I., Grotenhuis, J. T. C. and Koelmans, A. A. (2013), Bioturbation and dissolved organic matter enhance contaminant fluxes from sediment treated with powdered and granular activated carbon, Environmental science & technology, Vol. 47, No. 10, pp. 5092~5100. 
  8. Lin, D., Cho, Y. M., Werner, D. and Luthy, R. G. (2014), Bioturbation delays attenuation of DDT by clean sediment cap but promotes sequestration by thin-layered activated carbon, Environmental science & technology, Vol. 48, No. 2, pp. 1175~1183. 
  9. Mohan, R. K., Brown, M. P. and Barnes, C. R. (2000), Design criteria and theoretical basis for capping contaminated marine sediments, Applied ocean research, Vol. 22, No. 2, pp. 85~93. 
  10. Mount, D. R., Highland, T. L., Mattson, V. R., Dawson, T. D., Lott, K. G. and Ingersoll, C. G. (2006), Use of the oligochaete, Lumbriculus variegatus, as a prey organism for toxicant exposure of fish through the diet, Environmental Toxicology and Chemistry: An International Journal, Vol. 25, No. 10, pp. 2760~2767. 
  11. Nasrullah, A., Bhat, A. H., Naeem, A., Isa, M. H. and Danish, M. (2018), High surface area mesoporous activated carbon-alginate beads for efficient removal of methylene blue, International journal of biological macromolecules, Vol. 107, pp. 1792~1799. 
  12. Oen, A. M., Beckingham, B., Ghosh, U., Krusa, M. E., Luthy, R. G., Hartnik, T., ... and Cornelissen, G. (2012), Sorption of organic compounds to fresh and field-aged activated carbons in soils and sediments, Environmental science & technology, Vol. 46, No. 2, pp. 810~817. 
  13. Organisation for Economic Co-operation and Development. (2004), Test No. 222: Earthworm Reproduction Test (Eisenia Fetida/Eisenia Andrei), OECD Publishing. 
  14. Paquette, E., Giacalone, J. P., Fumo, M. and Roy, N. M. (2024), Butyl Benzyl Phthalate (BBP) Disrupts Neuromast Development in Embryonic Zebrafish, Environmental Toxicology and Pharmacology, 104392. pp. 1~4. 
  15. Srivastava, A., Gupta, B., Majumder, A., Gupta, A. K. and Nimbhorkar, S. K. (2021), A comprehensive review on the synthesis, performance, modifications, and regeneration of activated carbon for the adsorptive removal of various water pollutants, Journal of Environmental Chemical Engineering, Vol. 9, No. 5, 106177, pp. 1~29. 
  16. Vandenbossche, M., Jimenez, M., Casetta, M. and Traisnel, M. (2015), Remediation of heavy metals by biomolecules: a review, Critical Reviews in Environmental Science and Technology, Vol. 45, No. 15, pp. 1644~1704. 
  17. Wang, J., Deng, J., Chen, Z., Zhang, L., Shi, L., Zhang, X., ... and Chen, Y. (2023), Effects of biochar on earthworms during remediation of potentially toxic elements contaminated soils, Chemosphere, Vol. 338, 139487. pp. 1~11. 
  18. Yan, J. and Li, F. (2023), Effects of sediment dredging on freshwater system: a comprehensive review, Environmental Science and Pollution Research, Vol. 30, No. 57, pp. 119612~119626. 
  19. Yates, R. E., Arkles, M. E. and Harwood, A. D. (2023), Does Activated Carbon Used for Soil Remediation Impact Eisenia fetida?, Environmental Toxicology and Chemistry, Vol. 42, No. 6, pp. 1420~1430. 
  20. Zhao, C., Ge, L., Mai, L., Li, X., Chen, S., Li, Q., ... and Xu, C. (2023), Review on coal-based activated carbon: Preparation, modification, application, regeneration, and perspectives, Energy & Fuels, Vol. 37, No. 16, pp. 11622~11642. 
  21. Zheng, X., Zhang, B. T. and Teng, Y. (2014), Distribution of phthalate acid esters in lakes of Beijing and its relationship with anthropogenic activities, Science of the Total Environment, Vol. 476, pp. 107~113.